Option B is correct.
Step-by-step explanation:
We need to solve: ![\sqrt[3]{x^2}\sqrt[4]{x^3}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7Bx%5E2%7D%5Csqrt%5B4%5D%7Bx%5E3%7D)
We know that: ![\sqrt[n]{x}\sqrt[b]{x} =\sqrt[n*b]{x.x}= \sqrt[n*b]{x^2}](https://tex.z-dn.net/?f=%5Csqrt%5Bn%5D%7Bx%7D%5Csqrt%5Bb%5D%7Bx%7D%20%3D%5Csqrt%5Bn%2Ab%5D%7Bx.x%7D%3D%20%5Csqrt%5Bn%2Ab%5D%7Bx%5E2%7D)
Applying the above rule:
![\sqrt[3]{x^2}\sqrt[4]{x^3}\\=\sqrt[3*4]{x^2.x^3}\\=\sqrt[12]{x^5}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7Bx%5E2%7D%5Csqrt%5B4%5D%7Bx%5E3%7D%5C%5C%3D%5Csqrt%5B3%2A4%5D%7Bx%5E2.x%5E3%7D%5C%5C%3D%5Csqrt%5B12%5D%7Bx%5E5%7D)
So, Option B is correct.
Keywords: Solving with Exponents
Learn more about Solving with Exponents at:
#learnwithBrainly
The change of base formula allows you to write a logarithm in terms of logarithms with another base. It follows this pattern,

where a≠1 and b≠1
Assigning the base to be 7,

I hope I was able to answer your question. Have a good day.
To get your ratio of birdies do 8/32/30 and that will give you your ratio
Answer: 100
Step-by-step explanation:
4b squared where b= 5
Slot in 5 for b; 5 squared = 5x5= 25
4 (25)
=100