The reflection of BC over I is shown below.
<h3>
What is reflection?</h3>
- A reflection is a mapping from a Euclidean space to itself that is an isometry with a hyperplane as a set of fixed points; this set is known as the reflection's axis (in dimension 2) or plane (in dimension 3).
- A figure's mirror image in the axis or plane of reflection is its image by reflection.
See the attached figure for a better explanation:
1. By the unique line postulate, you can draw only one line segment: BC
- Since only one line can be drawn between two distinct points.
2. Using the definition of reflection, reflect BC over l.
- To find the line segment which reflects BC over l, we will use the definition of reflection.
3. By the definition of reflection, C is the image of itself and A is the image of B.
- Definition of reflection says the figure about a line is transformed to form the mirror image.
- Now, the CD is the perpendicular bisector of AB so A and B are equidistant from D forming a mirror image of each other.
4. Since reflections preserve length, AC = BC
- In Reflection the figure is transformed to form a mirror image.
- Hence the length will be preserved in case of reflection.
Therefore, the reflection of BC over I is shown.
Know more about reflection here:
brainly.com/question/1908648
#SPJ4
The question you are looking for is here:
C is a point on the perpendicular bisector, l, of AB. Prove: AC = BC Use the drop-down menus to complete the proof. By the unique line postulate, you can draw only one segment, Using the definition of, reflect BC over l. By the definition of reflection, C is the image of itself and is the image of B. Since reflections preserve , AC = BC.
Answer:
A = 1.5 π in² ≈ 4.7 in²
Step-by-step explanation:
the area (A) of the sector is calculated as
A = area of circle × fraction of circle
= πr² × 
= π × 3² × 
= 9π × 
= 1.5π in²
≈ 4.7 in² ( to the nearest tenth )
You could graph this, but it is simpler in this case to do it mathematically.
Since the x and values are the same (implying undefined slope) you can subtract the smaller y value from the larger y value. 2.5-1.2=1.3.
Answer:
c
you subtract the exponents when dividing numbers with the same base