i Am so cool
You can’t beat me I am the gingerbread man
Answer:
480.18
Step-by-step explanation:
453+6%
Youre welcome
Combinatorial Enumeration. That whole class was a rollercoaster ride of mind-blowing generating functions to prove crazy things. The exam had ridiculous questions like 'count the number of cactus trees with n vertices such that etc etc etc' and you'd do three pages of terrible terrible sums and algebra. Then your final answer would be something beautiful like n/2 and you'd breath a sigh of relief and thank the math gods.
Answer:
0.0326 = 3.26% probability that a randomly selected thermometer reads between −2.23 and −1.69.
The sketch is drawn at the end.
Step-by-step explanation:
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean and standard deviation , the z-score of a measure X is given by:
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Mean of 0°C and a standard deviation of 1.00°C.
This means that
Find the probability that a randomly selected thermometer reads between −2.23 and −1.69
This is the p-value of Z when X = -1.69 subtracted by the p-value of Z when X = -2.23.
X = -1.69
has a p-value of 0.0455
X = -2.23
has a p-value of 0.0129
0.0455 - 0.0129 = 0.0326
0.0326 = 3.26% probability that a randomly selected thermometer reads between −2.23 and −1.69.
Sketch: