Taking

and differentiating both sides with respect to

yields
![\dfrac{\mathrm d}{\mathrm dx}\bigg[3x^2+y^2\bigg]=\dfrac{\mathrm d}{\mathrm dx}\bigg[7\bigg]\implies 6x+2y\dfrac{\mathrm dy}{\mathrm dx}=0](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cmathrm%20d%7D%7B%5Cmathrm%20dx%7D%5Cbigg%5B3x%5E2%2By%5E2%5Cbigg%5D%3D%5Cdfrac%7B%5Cmathrm%20d%7D%7B%5Cmathrm%20dx%7D%5Cbigg%5B7%5Cbigg%5D%5Cimplies%206x%2B2y%5Cdfrac%7B%5Cmathrm%20dy%7D%7B%5Cmathrm%20dx%7D%3D0)
Solving for the first derivative, we have

Differentiating again gives
![\dfrac{\mathrm d}{\mathrm dx}\bigg[6x+2y\dfrac{\mathrm dy}{\mathrm dx}\bigg]=\dfrac{\mathrm d}{\mathrm dx}\bigg[0\bigg]\implies 6+2\left(\dfrac{\mathrm dy}{\mathrm dx}\right)^2+2y\dfrac{\mathrm d^2y}{\mathrm dx^2}=0](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cmathrm%20d%7D%7B%5Cmathrm%20dx%7D%5Cbigg%5B6x%2B2y%5Cdfrac%7B%5Cmathrm%20dy%7D%7B%5Cmathrm%20dx%7D%5Cbigg%5D%3D%5Cdfrac%7B%5Cmathrm%20d%7D%7B%5Cmathrm%20dx%7D%5Cbigg%5B0%5Cbigg%5D%5Cimplies%206%2B2%5Cleft%28%5Cdfrac%7B%5Cmathrm%20dy%7D%7B%5Cmathrm%20dx%7D%5Cright%29%5E2%2B2y%5Cdfrac%7B%5Cmathrm%20d%5E2y%7D%7B%5Cmathrm%20dx%5E2%7D%3D0)
Solving for the second derivative, we have

Now, when

and

, we have
Answer:
a constant is a data item whose value cannot change during the program execution just as its name implies that the value is constant a variable is a data item whose value can change during the program's execution . Thus as its name implies the the value can vary
Simplify the equation.
First, distribute the 2 in the left side of the equation.
Resulting in: 2x-6 = (x-1) + 7
Second, remove the parentheses form the right side of the equation (there is nothing to distribute there).
Resulting in: x - 1 + 7
Now simplify the right side of the equation by subtracting the 1 from the 7.
Resulting in: x + 6
Our goal is to isolate the x to the left side, and the numerals to the right side.
With that in mind, add the 6 (from the right side) to both sides. This cancels out the 6 on the right side.
Resulting in: 2x = 12
Lastly, in order to fully isolate the variable (x), we divide both sides by 2.
Resulting in: x = 6
Hope this helps.
Answer: 940
Explanation: A quick way to think of this is moving the decimal in 9.4 to the right by two decimal places (since there are two zeroes in 100) Hope this helps! :)
Answer:

Hopefully, this is your desired setup. (I noticed the formula you have to fill in there.)
Have a good day.
Step-by-step explanation:
Hi.
You could use the percent change formula.
Since we know it is a percent increase then we will do new-old instead of old-new:

x is the new amount of shampoo.
16.5 is the original amount (old) of shampoo.
The percent increase is 30%=0.30 .
So we have the following equation:

We could have found the equation like this:

Subtract 16.5 on both sides:

Divide both sides by 16.5:

By us of symmetric property of equality:
