1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Yuliya22 [10]
3 years ago
11

Horizontal and parallel lines c and d are cut by transversal p. At the intersection of lines c and p, the uppercase left angle i

s angle 1 and the uppercase right angle is angle 2. At the intersection of lines d and p, the uppercase right angle is angle 3 and the bottom left angle is angle 4.
Which set of equations is enough information to prove that lines c and d are parallel lines cut by transversal p?

m∠1 = 81° and m∠2 = 99°
m∠3 = 99° and m∠4 = 99°
m∠2 = 99° and m∠4 = 99°
m∠4 = 81° and m∠1 = 81°
Mathematics
1 answer:
konstantin123 [22]3 years ago
5 0

Answer:

the answer is the option C

m∠2 = 99° and m∠4 = 99°

Step-by-step explanation:

edg 2020

You might be interested in
She ran 52.16 seconds per 400 meters, how fast was she running in meters per hour?
Paul [167]

27607.3619632 meters per hour. Hope this helps!

8 0
3 years ago
Can anybody help plzz?? 65 points
Yakvenalex [24]

Answer:

\frac{dy}{dx} =\frac{-8}{x^2} +2

\frac{d^2y}{dx^2} =\frac{16}{x^3}

Stationary Points: See below.

General Formulas and Concepts:

<u>Pre-Algebra</u>

  • Equality Properties

<u>Calculus</u>

Derivative Notation dy/dx

Derivative of a Constant equals 0.

Stationary Points are where the derivative is equal to 0.

  • 1st Derivative Test - Tells us if the function f(x) has relative max or mins. Critical Numbers occur when f'(x) = 0 or f'(x) = undef
  • 2nd Derivative Test - Tells us the function f(x)'s concavity behavior. Possible Points of Inflection/Points of Inflection occur when f"(x) = 0 or f"(x) = undef

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Step-by-step explanation:

<u>Step 1: Define</u>

f(x)=\frac{8}{x} +2x

<u>Step 2: Find 1st Derivative (dy/dx)</u>

  1. Quotient Rule [Basic Power]:                    f'(x)=\frac{0(x)-1(8)}{x^2} +2x
  2. Simplify:                                                      f'(x)=\frac{-8}{x^2} +2x
  3. Basic Power Rule:                                     f'(x)=\frac{-8}{x^2} +1 \cdot 2x^{1-1}
  4. Simplify:                                                     f'(x)=\frac{-8}{x^2} +2

<u>Step 3: 1st Derivative Test</u>

  1. Set 1st Derivative equal to 0:                    0=\frac{-8}{x^2} +2
  2. Subtract 2 on both sides:                         -2=\frac{-8}{x^2}
  3. Multiply x² on both sides:                         -2x^2=-8
  4. Divide -2 on both sides:                           x^2=4
  5. Square root both sides:                            x= \pm 2

Our Critical Points (stationary points for rel max/min) are -2 and 2.

<u>Step 4: Find 2nd Derivative (d²y/dx²)</u>

  1. Define:                                                      f'(x)=\frac{-8}{x^2} +2
  2. Quotient Rule [Basic Power]:                  f''(x)=\frac{0(x^2)-2x(-8)}{(x^2)^2} +2
  3. Simplify:                                                    f''(x)=\frac{16}{x^3} +2
  4. Basic Power Rule:                                    f''(x)=\frac{16}{x^3}

<u>Step 5: 2nd Derivative Test</u>

  1. Set 2nd Derivative equal to 0:                    0=\frac{16}{x^3}
  2. Solve for <em>x</em>:                                                    x = 0

Our Possible Point of Inflection (stationary points for concavity) is 0.

<u>Step 6: Find coordinates</u>

<em>Plug in the C.N and P.P.I into f(x) to find coordinate points.</em>

x = -2

  1. Substitute:                    f(-2)=\frac{8}{-2} +2(-2)
  2. Divide/Multiply:            f(-2)=-4-4
  3. Subtract:                       f(-2)=-8

x = 2

  1. Substitute:                    f(2)=\frac{8}{2} +2(2)
  2. Divide/Multiply:            f(2)=4 +4
  3. Add:                              f(2)=8

x = 0

  1. Substitute:                    f(0)=\frac{8}{0} +2(0)
  2. Evaluate:                      f(0)=\text{unde} \text{fined}

<u>Step 7: Identify Behavior</u>

<em>See Attachment.</em>

Point (-2, -8) is a relative max because f'(x) changes signs from + to -.

Point (2, 8) is a relative min because f'(x) changes signs from - to +.

When x = 0, there is a concavity change because f"(x) changes signs from - to +.

3 0
3 years ago
How much will it cost to get 4 tires if the 4th one is free
GarryVolchara [31]
You would have to pay for 3 tires
3 0
3 years ago
Y intercept of this graph​
Aleksandr [31]

Answer:

The y intercept is - 2

Step-by-step explanation:

Because in the y axis the line crosses - 2

8 0
3 years ago
PLEASE HELP timed exam pls
3241004551 [841]

Answer:

helping hand help to write good

5 0
3 years ago
Other questions:
  • Please help solve!!!!!!!!!!!!!!!!!!!!
    15·1 answer
  • I WILL MARK BRAINLIEST!!!
    9·2 answers
  • 23÷1,624 5th grade math
    15·2 answers
  • Carl and Florence Lyles have the option of investing their $20,000 in a four-year CD with 5.15% interest compounded annually, 5%
    5·1 answer
  • 1
    14·1 answer
  • Solve the equation. 4(x + 5) - 4 = 4
    11·2 answers
  • How much interest is charge when 100,000 is borrowed for 6months at an annual simple interest rate of 12 percent
    11·1 answer
  • Please help me with this question.​
    9·1 answer
  • Please help ASAP !!!<br><br> THANKS!!
    5·2 answers
  • Find the length of the unknown segment (x) in each figure. Use theorem of secant segment and
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!