An equation for the parabola would be y²=-19x.
Since we have x=4.75 for the directrix, this tells us that the parabola's axis of symmetry runs parallel to the x-axis. This means we will use the standard form
(y-k)²=4p(x-h), where (h, k) is the vertex, (h+p, k) is the focus and x=h-p is the directrix.
Beginning with the directrix:
x=h-p=4.75
h-p=4.75
Since the vertex is at (0, 0), this means h=0 and k=0:
0-p=4.75
-p=4.75
p=-4.75
Substituting this into the standard form as well as our values for h and k we have:
(y-0)²=4(-4.75)(x-0)
y²=-19x
Answer:
y=2x
Step-by-step explanation:
slope = rise/run = 2/1 = 2
if it has a diameter of 8, that means its radius is half that, or 4.
![\bf \textit{volume of a cone}\\\\ V=\cfrac{\pi r^2 h}{3}~~ \begin{cases} r=radius\\ h=height\\[-0.5em] \hrulefill\\ r=4\\ h=5 \end{cases}\implies V=\cfrac{\pi (4)^2(5)}{3}\implies V=\cfrac{80\pi }{3} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ ~\hfill \stackrel{using~\pi =3.14}{V= 83.7\overline{3}}~\hfill](https://tex.z-dn.net/?f=%20%5Cbf%20%5Ctextit%7Bvolume%20of%20a%20cone%7D%5C%5C%5C%5C%0AV%3D%5Ccfrac%7B%5Cpi%20r%5E2%20h%7D%7B3%7D~~%0A%5Cbegin%7Bcases%7D%0Ar%3Dradius%5C%5C%0Ah%3Dheight%5C%5C%5B-0.5em%5D%0A%5Chrulefill%5C%5C%0Ar%3D4%5C%5C%0Ah%3D5%0A%5Cend%7Bcases%7D%5Cimplies%20V%3D%5Ccfrac%7B%5Cpi%20%284%29%5E2%285%29%7D%7B3%7D%5Cimplies%20V%3D%5Ccfrac%7B80%5Cpi%20%7D%7B3%7D%0A%5C%5C%5C%5C%5B-0.35em%5D%0A%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%0A~%5Chfill%20%5Cstackrel%7Busing~%5Cpi%20%3D3.14%7D%7BV%3D%2083.7%5Coverline%7B3%7D%7D~%5Chfill%20)
The wire, the pole and the segment joining the leg of the pole to the wire in the ground form a right triangle whose hypotenuse is the wire, and the side opposite to the angle 36° is the pole.
By right triangle trigonometry, sin36°=(opposite side)/(hypotenuse.)
Substituting, we have 0.588=(opposite side)/220, thus the length of the opposite side, which represents the length of the pole, is
0.588*220 ft=129.3 ft
Answer: Choice B
There is not convincing evidence because the interval contains 0.
========================================================
Explanation:
The confidence interval is (-0.29, 0.09)
This is the same as writing -0.29 < p1-p1 < 0.09
The thing we're trying to estimate (p1-p2) is between -0.29 and 0.09
Because 0 is in this interval, it is possible that p1-p1 = 0 which leads to p1 = p2.
Therefore, it is possible that the population proportions are the same.
The question asks " is there convincing evidence of a difference in the true proportions", so the answer to this is "no, there isn't convincing evidence". We would need both endpoints of the confidence interval to either be positive together, or be negative together, for us to have convincing evidence that the population proportions are different.