Answer:
D.
Step-by-step explanation:
Remember that the limit definition of a derivative at a point is:
![\displaystyle{\frac{d}{dx}[f(a)]= \lim_{x \to a}\frac{f(x)-f(a)}{x-a}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%7B%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28a%29%5D%3D%20%5Clim_%7Bx%20%5Cto%20a%7D%5Cfrac%7Bf%28x%29-f%28a%29%7D%7Bx-a%7D%7D)
Hence, if we let f(x) be ln(x+1) and a be 1, this will yield:
![\displaystyle{\frac{d}{dx}[f(1)]= \lim_{x \to 1}\frac{\ln(x+1)-\ln(2)}{x-1}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%7B%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%281%29%5D%3D%20%5Clim_%7Bx%20%5Cto%201%7D%5Cfrac%7B%5Cln%28x%2B1%29-%5Cln%282%29%7D%7Bx-1%7D%7D)
Hence, the limit is equivalent to the derivative of f(x) at x=1, or f’(1).
The answer will thus be D.
Answer:
196 miles
Step-by-step explanation:
if he goes 140 miles with 5 gallons, each gallon lets him go 28 miles.
140miles/5gallons=28miles/1gallon
then 7 gallons lets you go 196 miles
brainliest please :)
4x^2 + 5xy - y^2 = 6
Implicitly differentiating both sides,
4(2x) + 5(x y' + y) - 2yy' = 0
where y' = dy/dx
8x + 5xy' +5y -2yy' = 0
combining y' terms
y' (5x-2y) +8x +5y = 0
y'(5x-2y) = -(8x+5y)
dy/dx = -(8x+5y)/(5x-2y)
or
dy/dx = (8x+5y)/(2y-5x)
Answer:
I hope this helps you
Step-by-step explanation:
84-16=68
68-18=50
50-28=22
n=22
equation:84-(16+18+28)
Answer:
See below in bold.
Step-by-step explanation:
You work in fractions of the city streets done per hour:
1/200 + 1/400 = 1 /x where x is the number of hours taken by 2 teams.
Multiply through by the LCM 400x:
2x + x = 400
3x = 400
x = 133.33 hours.
As there are 168 hours in a week they will have enough time.