Answer:
Mechanical
Explanation:
Electromagnetic waves are waves that have no medium to travel whereas mechanical waves need a medium for its transmission.
Answer: 996m/s
Explanation:
Formula for calculating velocity of wave in a stretched string is
V = √T/M where;
V is the velocity of wave
T is tension
M is the mass per unit length of the wire(m/L)
Since the second wire is twice as far apart as the first, it will be L2 = 2L1
Let V1 and V2 be the speed of the shorter and longer wire respectively
V1 = √T/M1... 1
V2 = √T/M2... 2
Since V1 = 249m/s, M1 = m/L1 M2 = m/L2 = m/2L1
The equations will now become
249 = √T/(m/L1) ... 3
V2 = √T/(m/2L1)... 4
From 3,
249² = TL1/m...5
From 4,
V2²= 2TL1/m... 6
Dividing equation 5 by 6 we have;
249²/V2² = TL1/m×m/2TL1
{249/V2}² = 1/2
249/V2 = (1/2)²
249/V2 = 1/4
V2 = 249×4
V2 = 996m/s
Therefore the speed of the wave on the longer wire is 996m/s
Answer:
i hope it will be useful for you
Explanation:
F=5.6×10^-10N
R=93cm=0.93m
let take m1 and m2 =m²
according to newton's law of universal gravitation
F=m1m2/r²
F=m²/r²
now we have to find masses
F×r²=m²
5.6×10^10N×0.93m=m²
5.208×10^-9=m²
taking square root on b.s
√5.208×10^-9=√m²
so the two masses are m1=7.2×10^-5
and m2=7.2×10^-5
Explanation:
There's not enough information in the problem to solve it. We need to know either the initial speed of the lorry, or the time it takes to stop.
For example, if we assume the initial speed of the lorry is 25 m/s, then we can find the rate of deceleration:
v² = v₀² + 2aΔx
(0 m/s)² = (25 m/s)² + 2a (50 m)
a = -6.25 m/s²
We can then use Newton's second law to find the force:
F = ma
F = (7520 kg) (-6.25 m/s²)
F = -47000 N