Answer:
The magnitude of force is 1.86 N and the direction of force is towards the other wire.
Explanation:
Given:
Current flowing through each power line, I = 130 A
Distance between the two power lines, d = 40 cm = 0.4 m
Length of power lines, L = 220 m
The force exerted by the power lines on each other is given by the relation:

Substitute the suitable values in the above equation.

F = 1.86 N
Since the direction of current flowing through the power lines are opposite to each other, so the force is attractive in nature. Hence, the direction of force experienced by the power lines on each other is towards the each other.
The sun is the centre of our solar system
Answer:
If the temperature of the colder object rises by the same amount as the temperature of the hotter object drops, then <u>the specific heats of both objects will be equal.</u>
Explanation:
If the temperature of the colder object rises by the same amount as the temperature of the hotter object drops when the two<u> objects of same mass</u> are brought into contact, then their specific heat capacity is equal.
<u>We can prove this by the equation of heat for the two bodies:</u>
<em>According to given condition,</em>


<em>when there is no heat loss from the system of two bodies then </em>


- Thermal conductivity is ultimately affects the rate of heat transfer, however the bodies will attain their final temperature based upon their mass and their specific heat capacities.
The temperature of the colder object will rise twice as much as the temperature of the hotter object only in two cases:
- when the specific heat of the colder object is half the specific heat of the hotter object while mass is equal for both.
OR
- the mass of colder object is half the mass of the hotter object while their specific heat is same.
Answer: B) 2.5 m/s
Explanation: Find the average of the time and distance, and see how far they go in only 1 second.
1 + 2 + 3 + 4 + 5 = 15
15 divided by 5 = 3
3 seconds
2 + 5 + 7 + 10 + 12 = 36
36 divided by 5 = 7.2
7.2m per 3 seconds.
7.2 divided by 3 = 2.4
Therefore, the answer is technically 2.4m/s
Answer:
1400 N
Explanation:
Verá, durante el salto mortal, el piloto se mueve en una trayectoria circular y la fuerza que actúa sobre él es una fuerza centrípeta.
Sea la fuerza centrípeta F, la masa del piloto (m) = 70 Kg, el radio (r) = 500 my la velocidad (v) = 360 km / hr * 1000/3600 = 100 m / s
F = mv ^ 2 / r
F = 70 * (100) ^ 2/500
F = 1400 N