Using the general gas equation:
P₁V₁/T₁ = P₂V₂/T₂
(105*220)/275 = (P₂*95)/310
(105*220)*310/275 = P₂*95
(105*220*310)/(275*95) = P₂
274.11 = P₂
P₂ = 274.11 kPa
New Pressure = 274.11 kPa
Answer:
no hablo espanol ok? sorry
Answer:
7.82x10^24 molecules of water
Explanation:
H2O=18.015 g/mol Avogadro's #=6.022x10^23 molecules
0.234L x 1000g/1L x 1 mol H2O/18.015 g x 6.022x10^23 = 7.82x10^23 molecules of water
Answer:
1. 58.5g/mol
2. 261g/mol
3. 158g/mol
4. 71g/mol
5. 44g/mol
Explanation:
The molar mass of a compound is the total mass of the sum of masses of all individual elements that make up the compound. First, we need to know the atomic masses of each element in a compound.
1. NaCl
Where; Na = 23, and Cl = 35.5
Molar mass of NaCl = 23 + 35.5
= 58.5g/mol
2. Ba(NO3)2:
Where; Ba = 137, N = 14, O = 16
Molar mass of Ba(NO3)2: 137 + {14 + 16(3)} 2
137 + (14 + 48)2
137 + (62)2
137 + 124
= 261g/mol
3. K(MnO4)
Where; K = 39, Mn = 55, O = 16
Molar mass of KMnO4 = 39 + 55 + 16(4)
= 94 + 64
= 158g/mol
4. Cl2
Where; Cl = 35.5
Molar mass of Cl2 = 35.5(2)
= 71g/mol
5. CO2
Where; C = 12, O = 16
Molar Mass of CO2 = 12 + 16(2)
= 12 + 32
= 44g/mol
Answer:
half-life of 5,700 ± 40 years
Explanation: