Answer:
Step-by-step explanation:
Since G(0) = g(0) = 20, the parabolic graphs of these functions share a y-intercept: (0, 20).
Completing the square puts these equations into vertex form, which simplifies comparisons of the graphs:
G(x) = 2x^2 - 12x + 20 becomes
2(x^2 - 6x + 9 - 9) + 20, or
2(x - 3)^2 - 18 + 20, or 2(x - 3)^2 + 2. Comparing this result to
a(x - h)^2 + k, we see that the vertex is located at (3, 2).
Going through the same process for g(x) 2x^2+12x+20, we get:
g(x) = 2(x + 3)^2 + 2, whose vertex is at (-3, 2).
Next time, please include ALL info pertaining to your question, including the set of possible answer choices. Thank you.
Answer:
1. 3rd degree
2. No degree
3. First degree
4. 8th degree
Step-by-step explanation:
Hope this helps!
Remember that to find the vertical asymptotes of rational functions, we just need to set the denominator equal to zero and solve for the variable, in this case

, so lets do it:


As you can see, our rational functions has
2 vertical asymptotes: 
and