A voltmeter<span> its </span>instrument<span> used for </span>measuring<span> electrical potential difference between two points in an electric circuit. </span>An ammeter<span> is a </span>measuring device<span> used to</span>measure<span> the electric current in a circuit.
</span>
Answer:
.
Explanation:
The frequency
of a wave is equal to the number of wave cycles that go through a point on its path in unit time (where "unit time" is typically equal to one second.)
The wave in this question travels at a speed of
. In other words, the wave would have traveled
in each second. Consider a point on the path of this wave. If a peak was initially at that point, in one second that peak would be
How many wave cycles can fit into that
? The wavelength of this wave
gives the length of one wave cycle. Therefore:
.
That is: there are
wave cycles in
of this wave.
On the other hand, Because that
of this wave goes through that point in each second, that
wave cycles will go through that point in the same amount of time. Hence, the frequency of this wave would be
Because one wave cycle per second is equivalent to one Hertz, the frequency of this wave can be written as:
.
The calculations above can be expressed with the formula:
,
where
represents the speed of this wave, and
represents the wavelength of this wave.
I believe the correct answer would be kimberlite. Diamonds are usually found in pipes 50 to 200 m across made of kimberlite. It is an igneous rock that is known to contain traces of diamonds. It is named base on the town where it was discovered which is Kimberley, South Africa.
Answer:
(a) t = 1.14 s
(b) h = 0.82 m
(c) vf = 7.17 m/s
Explanation:
(b)
Considering the upward motion, we apply the third equation of motion:

where,
g = - 9.8 m/s² (-ve sign for upward motion)
h = max height reached = ?
vf = final speed = 0 m/s
vi = initial speed = 4 m/s
Therefore,

<u>h = 0.82 m</u>
Now, for the time in air during upward motion we use first equation of motion:

(c)
Now we will consider the downward motion and use the third equation of motion:

where,
h = total height = 0.82 m + 1.8 m = 2.62 m
vi = initial speed = 0 m/s
g = 9.8 m/s²
vf = final speed = ?
Therefore,

<u>vf = 7.17 m/s</u>
Now, for the time in air during downward motion we use the first equation of motion:

(a)
Total Time of Flight = t = t₁ + t₂
t = 0.41 s + 0.73 s
<u>t = 1.14 s</u>