Answer:
An object which experiences either a change in the magnitude or the direction of the velocity vector can be said to be accelerating. This explains why an object moving in a circle at constant speed can be said to accelerate - the direction of the velocity changes.
if a car turns a corner at constant speed, it is accelerating because its direction is changing. The quicker you turn, the greater the acceleration. So there is an acceleration when velocity changes either in magnitude (an increase or decrease in speed) or in direction, or both.
Explanation:
Answer:
x = 25 / μ [ ft]
Explanation:
To solve this exercise we can use Newton's second law.
Let's set a reference system where the x axis is parallel to the road
Y axis
N_B + N_A - W_van - W_load = 0
N_B + N_A = W_van + W_load
X axis
fr = ma
a = fr / m
the total mass is
m = (W_van + W_load) / g
the friction force has the expression
fr = μ N_{total}
fr = μy (W_van + W_load)
we substitute
a = μ (W_van + W_load)
a = μ g
taking the acceleration let's use the kinematic relations where the final velocity is zero
v² = v₀² - 2 a x
0 = v₀² -2a x
x =
x =
x =
x = 25 / μ [ ft]
Most waves approach the shore at an angle. However, they bend to be nearly parallel to the shore as they approach it because when a wave reaches a beach or coastline, it releases a burst of energy that generates a current, which runs parallel to the shoreline.
- Most waves approach shore at an angle. As each one arrives, it pushes water along the shore, creating what is known as a longshore current within the surf zone.
- Waves approach the coast at an angle because of the direction of prevailing wind.
- The part of the wave in shallow water slows down, while the part of the wave in deeper water moves at the same speed.
- Thus when wave reaches a beach or coastline, it releases a burst of energy that generates a current, which runs parallel to the shoreline.
To know more about waves visit:
brainly.com/question/27831266
#SPJ4
<span>carbon, hydrogen, and oxygen onLY</span>