Answer:
Electric Current
Explanation:
An electric current is defined as the flow of electrons through the wire and the components in a circuit.
This flow of electrons is caused by the presence of a battery, which creates a potential difference in the circuit. As a result of this potential difference, the electrons in the wire flow from the negative pole of the battery towards the positive pole (passing through the wire and the components of the circuit).
Explanation:
Given that,
2 strings both vibrate at exactly 220 Hz. The frequency of sound wave depends on the tension in the strings.
The tension in one of them is then decreased sightly, then
will decrese.
Beat frequency, 

So, the new frequency of the string is 217 Hz. Hence, this is the required solution.
Answer:
v₂ = 63.62 m / s
Explanation:
For this exercise in fluid mechanics we will use Bernoulli's equation
P₁ + ρ g v₁² + ρ g y₁ = P₂ + ρ g v₂² + ρ g y₂
where the subscript 1 refers to the inside of the wing and the subscript 2 to the top of the wing.
We will assume that the distance between the two parts is small, so y₁ = y₂
P₁-P₂ = ρ g (v₂² - v₁²)
pressure is defined by
P = F / A
we substitute
ΔF / A = ρ g (v₂² - v₁²)
v₂² = 
suppose that the area of the wing is A = 1 m²
we substitute
v₂² =
v₂² = 79.10 + 3969
v₂ = √4048.1
v₂ = 63.62 m / s
Answer: When rubbing a balloon with a wool cloth, it puts negative charges on the balloon. Negative charges attract to positive charges. If a balloon is not rubbed with the wool cloth, it has an equal amount of negative to positive charges, so it will attract to a rubbed balloon.
We can rearrange the mirror equation before plugging our values in.
1/p = 1/f - 1/q.
1/p = 1/10cm - 1/40cm
1/p = 4/40cm - 1/40cm = 3/40cm
40cm=3p <-- cross multiplication
13.33cm = p
Now that we have the value of p, we can plug it into the magnification equation.
M=-16/13.33=1.2
1.2=h'/8cm
9.6=h'
So the height of the image produced by the mirror is 9.6cm.