The only way to determine whether or not an outcome is unusual or not is to compare it with previous or future outcomes.
Answer:
Radius =6.518 feet
Height = 26.074 feet
Step-by-step explanation:
The Volume of the Solid formed = Volume of the two Hemisphere + Volume of the Cylinder
Volume of a Hemisphere 
Volume of a Cylinder 
Therefore:
The Volume of the Solid formed

Area of the Hemisphere =
Curved Surface Area of the Cylinder =
Total Surface Area=

Cost of the Hemispherical Ends = 2 X Cost of the surface area of the sides.
Therefore total Cost, C

Recall: 
Therefore:

The minimum cost occurs at the point where the derivative equals zero.


![-27840+32\pi r^3=0\\27840=32\pi r^3\\r^3=27840 \div 32\pi=276.9296\\r=\sqrt[3]{276.9296} =6.518](https://tex.z-dn.net/?f=-27840%2B32%5Cpi%20r%5E3%3D0%5C%5C27840%3D32%5Cpi%20r%5E3%5C%5Cr%5E3%3D27840%20%5Cdiv%2032%5Cpi%3D276.9296%5C%5Cr%3D%5Csqrt%5B3%5D%7B276.9296%7D%20%3D6.518)
Recall:

Therefore, the dimensions that will minimize the cost are:
Radius =6.518 feet
Height = 26.074 feet
It is 1.05 E-14 that's the answer
Answer:
Center: (-2, 4)
Radius: 4
Step-by-step explanation:
To find the centre and radius, we require to identify g , f and c
By comparing the coefficients of 'like terms' in the given equation with the general form.
2g = 4 → g = 2 , 2f = -8 → f = -4 and c = 4 → center=(−g,−f)=(−2,4)
radius = √22+(−4)2−4= √4+16−4=4
Center: (-2, 4)
Radius: 4
Hope This Helps! :)
Given:
Total number of coins (Quarters and dimes) = 60
Total amount = $12.45
To find:
The number of quarters and dimes.
Solution:
Let x be the number of quarters and y be the number of dimes.
We know that,
1 quarter = 0.25 dollar
1 dime = 0.10 dollar
Total coins:
...(i)
Total amount:
...(ii)
From (i), we get
...(iii)
Putting this value in (ii), we get




Divide both sides by 0.15.


Putting x=43 in (iii), we get


So, the number of quarters is 43 and the number of dimes is 17.
Therefore, the correct option is b.