Answer: 6751 L
Explanation:
1000 mL = 1 L
so dividing 6751 by 1000 gives .6751 L
It is a reaction between an element and a compound that results in a different element and compound
Answer:
5.8 g
Explanation:
Molecular weight in Daltons is equivalent to the molecular weight in grams per mole.
The amount of NaCl required is calculated as follows:
(2 mol/L)(50 mL)(1 L/1000 mL) = 0.1 mol
This amount is converted to grams using the molar mass (58 g/mol).
(0.1 mol)(58 g/mol) = 5.8 g
Answer:
-5.51 kJ/mol
Explanation:
Step 1: Calculate the heat required to heat the water.
We use the following expression.

where,
- c: specific heat capacity
- m: mass
- ΔT: change in the temperature
The average density of water is 1 g/mL, so 75.0 mL ≅ 75.0 g.

Step 2: Calculate the heat released by the methane
According to the law of conservation of energy, the sum of the heat released by the combustion of methane (Qc) and the heat absorbed by the water (Qw) is zero
Qc + Qw = 0
Qc = -Qw = -22.0 kJ
Step 3: Calculate the molar heat of combustion of methane.
The molar mass of methane is 16.04 g/mol. We use this data to find the molar heat of combustion of methane, considering that 22.0 kJ are released by the combustion of 64.00 g of methane.

Answer:
A student's name paired with the sport that they play.
Explanation: