Answer:
The answer to your question is 25 grams
Explanation:
Data
half-life = 5730 years
sample = 200 g
after 3 half-lives
Process
Calculate the amount of sample after one, two and three half-lives.
After each half-life, that of sample is half the previous amount.
Number of half-lives Amount of sample
0 200 g
1 100 g
2 50 g
3 25 g
NaN₃ is the chemical formula for Sodium Azide
Answer:25,06 kJ of energy must be added to a 75 g block of ice.
ΔHfusion(H₂O) = 6,01 kJ/mol.
T(H₂O) = 0°C.
m(H₂O) = 75 g.
n(H₂O) = m(H₂O) ÷ M(H₂O).
n(H₂O) = 75 g ÷ 18 g/mol.
n(H₂O) = 4,17 mol.
Q = ΔHfusion(H₂O) · n(H₂O)
Q = 6,01 kJ/mol · 4,17 mol
Q = 25,06 kJ.
Explanation:
Answer:
See explanation
Explanation:
In chemistry, the idea of "like dissolves like" is of utmost importance. A substance is only soluble in another with which it can effectively interact.
We must note that to be "soluble" means that the solute actually interacts effectively (dissolves) in the solvent.
However, vinegar is a polar substance while oil is a non polar substance hence the two can not effectively interact. That is, the vinegar can not dissolve in oil.
The two will separate into two phases upon standing. Therefore, the bottle of salad dressing made with oil and vinegar must be shaken in order to mix the two thoroughly before it is used.
Answer:
exothermic entropy is increased
Explanation:
An exothermic process is one whose rate increases when the temperature is decreased. Hence if a decrease in temperature favours the dissolution of more solute at equilibrium, then the process is exothermic.
Similarly, the dissolution of a solute in a solvent increases the disorderliness (entropy) of the system because of the increase in the number of particles present. Hence once a solute in dissolved, the entropy of the system increases.