Answer:
The function for the outside temperature is represented by
, where t is measured in hours.
Step-by-step explanation:
Since outside temperature can be modelled as a sinusoidal function, the period is of 24 hours and amplitude of temperature and average temperature are, respectively:
Amplitude


Mean temperature


Given that average temperature occurs six hours after the lowest temperature is registered. The temperature function is expressed as:
![T(t) = \bar T + A \cdot \sin \left[2\pi\cdot\frac{t-6\,h}{\tau} \right]](https://tex.z-dn.net/?f=T%28t%29%20%3D%20%5Cbar%20T%20%2B%20A%20%5Ccdot%20%5Csin%20%5Cleft%5B2%5Cpi%5Ccdot%5Cfrac%7Bt-6%5C%2Ch%7D%7B%5Ctau%7D%20%5Cright%5D)
Where:
- Mean temperature, measured in degrees.
- Amplitude, measured in degrees.
- Daily period, measured in hours.
- Time, measured in hours. (where t = 0 corresponds with 5 AM).
If
,
and
, the resulting function for the outside temperature is:
![T(t) = 85\º + 15\º \cdot \sin \left[\frac{t-6\,h}{24\,h} \right]](https://tex.z-dn.net/?f=T%28t%29%20%3D%2085%5C%C2%BA%20%2B%2015%5C%C2%BA%20%5Ccdot%20%5Csin%20%5Cleft%5B%5Cfrac%7Bt-6%5C%2Ch%7D%7B24%5C%2Ch%7D%20%5Cright%5D)
Short AnswerThere are two numbers
x1 = -0.25 + 0.9682i <<<<
answer 1x2 = - 0.25 - 0.9582i <<<<
answer 2 I take it there are two such numbers.
Let one number = x
Let one number = y
x + y = -0.5
y = - 0.5 - x (1)
xy = 1 (2)
Put equation 1 into equation 2
xy = 1
x(-0.5 - x) = 1
-0.5x - x^2 = 1 Subtract 1 from both sides.
-0.5x - x^2 - 1 = 0 Order these by powers
-x^2 - 0.5x -1 = 0 Multiply though by - 1
x^2 + 0.5x + 1 = 0 Use the quadratic formula to solve this.

a = 1
b = 0.5
c = 1

x = [-0.5 +/- sqrt(0.25 - 4)] / 2
x = [-0.5 +/- sqrt(-3.75)] / 2
x = [-0.25 +/- 0.9682i
x1 = -0.25 + 0.9682 i
x2 = -0.25 - 0.9682 i
These two are conjugates. They will add as x1 + x2 = -0.25 - 0.25 = - 0.50.
The complex parts cancel out. Getting them to multiply to 1 will be a little more difficult. I'll do that under the check.
Check(-0.25 - 0.9682i)(-0.25 + 0.9682i)
Use FOIL
F:-0.25 * -0.25 = 0.0625
O: -0.25*0.9682i
I: +0.25*0.9682i
L: -0.9682i*0.9682i = - 0.9375 i^2 = 0.9375
NoticeThe two middle terms (labled "O" and "I" ) cancel out. They are of opposite signs.
The final result is 0.9375 and 0.0625 add up to 1
10.49 It was really 10.4880884817 but 8 rounds it up to 10.49