1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
yan [13]
3 years ago
15

Help, very confused with this question

Mathematics
1 answer:
horsena [70]3 years ago
5 0
I think its d my friend but wait for another comment as I dont think I am 100% correct
You might be interested in
The answers to the problems
GuDViN [60]

Answer:

the fisrt question it b

4 0
3 years ago
Maria needs to be at the airport terminal at 15:20. It will take
bogdanovich [222]

Answer:

12:30

Step-by-step explanation:

6 0
3 years ago
Solve the equation in the interval [0,2π]. If there is more than one solution write them separated by commas.
Sedaia [141]
\large\begin{array}{l} \textsf{Solve the equation for x:}\\\\ 
\mathsf{(tan\,x)^2+2\,tan\,x-4.76=0}\\\\\\ \textsf{Substitute}\\\\ 
\mathsf{tan\,x=t\qquad(t\in \mathbb{R})}\\\\\\ \textsf{so the equation 
becomes}\\\\ \mathsf{t^2+2t-4.76=0}\quad\Rightarrow\quad\begin{cases} 
\mathsf{a=1}\\\mathsf{b=2}\\\mathsf{c=-4.76} \end{cases} 
\end{array}


\large\begin{array}{l} \textsf{Using 
the quadratic formula:}\\\\ \mathsf{\Delta=b^2-4ac}\\\\ 
\mathsf{\Delta=2^2-4\cdot 1\cdot (-4.76)}\\\\ 
\mathsf{\Delta=4+19.04}\\\\ \mathsf{\Delta=23.04}\\\\ 
\mathsf{\Delta=\dfrac{2\,304}{100}}\\\\ 
\mathsf{\Delta=\dfrac{\diagup\!\!\!\! 4\cdot 576}{\diagup\!\!\!\! 4\cdot
 25}}\\\\ \mathsf{\Delta=\dfrac{24^2}{5^2}} \end{array}

\large\begin{array}{l}
 \mathsf{\Delta=\left(\dfrac{24}{5}\right)^{\!2}}\\\\ 
\mathsf{\Delta=(4.8)^2}\\\\\\ 
\mathsf{t=\dfrac{-b\pm\sqrt{\Delta}}{2a}}\\\\ 
\mathsf{t=\dfrac{-2\pm\sqrt{(4.8)^2}}{2\cdot 1}}\\\\ 
\mathsf{t=\dfrac{-2\pm 4.8}{2}}\\\\ \mathsf{t=\dfrac{\diagup\!\!\!\! 
2\cdot (-1\pm 2.4)}{\diagup\!\!\!\! 2}}\\\\\mathsf{t=-1\pm 2.4} 
\end{array}

\large\begin{array}{l} \begin{array}{rcl} 
\mathsf{t=-1-2.4}&~\textsf{ or }~&\mathsf{t=-1+2.4}\\\\ 
\mathsf{t=-3.4}&~\textsf{ or }~&\mathsf{t=1.4} \end{array} 
\end{array}


\large\begin{array}{l} \textsf{Both 
are valid values for t. Substitute back for }\mathsf{t=tan\,x:}\\\\ 
\begin{array}{rcl} \mathsf{tan\,x=-3.4}&~\textsf{ or 
}~&\mathsf{tan\,x=1.4} \end{array}\\\\\\ \textsf{Take the inverse 
tangent function:}\\\\ \begin{array}{rcl} 
\mathsf{x=tan^{-1}(-3.4)+k\cdot \pi}&~\textsf{ or 
}~&\mathsf{x=tan^{-1}(1.4)+k\cdot \pi}\\\\ 
\mathsf{x=-tan^{-1}(3.4)+k\cdot \pi}&~\textsf{ or 
}~&\mathsf{x=tan^{-1}(1.4)+k\cdot \pi} \end{array}\\\\\\ 
\textsf{where k in an integer.} \end{array}

__________


\large\begin{array}{l}
 \textsf{Now, restrict x values to the interval 
}\mathsf{[0,\,2\pi]:}\\\\ \bullet~~\textsf{For }\mathsf{k=0:}\\\\ 
\begin{array}{rcl} 
\mathsf{x=-tan^{-1}(3.4)


\large\begin{array}{l}
 \bullet~~\textsf{For }\mathsf{k=1:}\\\\ \begin{array}{rcl} 
\mathsf{x=-tan^{-1}(3.4)+\pi}&~\textsf{ or 
}~&\mathsf{x=tan^{-1}(1.4)+\pi} \end{array}\\\\\\ 
\boxed{\begin{array}{c}\mathsf{x=-tan^{-1}(3.4)+\pi} 
\end{array}}\textsf{ is in the 2}^{\mathsf{nd}}\textsf{ quadrant.}\\\\ 
\mathsf{x\approx 1.86~rad~~(106.39^\circ)}\\\\\\ 
\boxed{\begin{array}{c}\mathsf{x=tan^{-1}(1.4)+\pi} \end{array}}\textsf{
 is in the 3}^{\mathsf{rd}}\textsf{ quadrant.}\\\\ \mathsf{x\approx 
4.09~rad~~(234.46^\circ)}\\\\\\ \end{array}


\large\begin{array}{l}
 \bullet~~\textsf{For }\mathsf{k=2:}\\\\ \begin{array}{rcl} 
\mathsf{x=-tan^{-1}(3.4)+2\pi}&~\textsf{ or 
}~&\mathsf{x=tan^{-1}(1.4)+2\pi>2\pi~~\textsf{(discard)}} 
\end{array}\\\\\\ \boxed{\begin{array}{c}\mathsf{x=-tan^{-1}(3.4)+2\pi} 
\end{array}}\textsf{ is in the 4}^{\mathsf{th}}\textsf{ quadrant.}\\\\ 
\mathsf{x\approx 5.00~rad~~(286.39^\circ)} \end{array}


\large\begin{array}{l}
 \textsf{Solution set:}\\\\ 
\mathsf{S=\left\{tan^{-1}(1.4);\,-tan^{-1}(3.4)+\pi;\,tan^{-1}(1.4)+\pi;\,-tan^{-1}(3.4)+2\pi\right\}}
 \end{array}


<span>If you're having problems understanding this answer, try seeing it through your browser: brainly.com/question/2071152</span>


\large\textsf{I hope it helps.}


Tags: <em>trigonometric trig quadratic equation tangent tan solve inverse symmetry parity odd function</em>

6 0
3 years ago
Find the slope of the line that passes through (10, 1) (8,10)
fenix001 [56]
-4.5 I hope that helps
8 0
3 years ago
Round 45,122 to the nearest ten thousand
Salsk061 [2.6K]
<span>Rounded to the nearest 10,000, 45,122 is 50,000. This is because the 5 has been reached and so it is rounded up.</span>
7 0
3 years ago
Read 2 more answers
Other questions:
  • 23 times 67 estimated
    11·1 answer
  • Nine of 15 students completed their homework. What is the ratio of students who completed their homework to students who did not
    14·1 answer
  • -5 x + y = - 21 and y = x - 1 solve the system of equation
    5·1 answer
  • The quotient of the sum of 3 and a number and 6 is less than -2
    7·2 answers
  • Which of the following would give the correct binomial expansion for the expression below?
    6·2 answers
  • 3. The graph shows the vertical displacement y, in centimeters, that a weight bouncing from a spring would achieve if there were
    9·1 answer
  • HELP PLEASE ILL GIVE BRAINLY
    7·1 answer
  • 18 ≥ 6x what is the answer
    14·1 answer
  • Find the difference -4 -5​
    6·1 answer
  • What is the difference and similarity of finite and infinite set​
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!