Divide
(the distance covered in some period of time)
by
(the time taken to cover the distance).
The quotient is the average speed during that period of time.
Answer:
Weight
a) weight's vertical component = Normal upward force
b) weight's horizontal component = Friction force = (mass of ball)(acceleration)
These forces depend upon the track,
1) inclined or horizontal
2) steepness.
Explanation
The force of gravity points straight down, but a ball rolling down a ramp doesn't go straight down, it follows the ramp. Therefore, only the component of the weight which points along the direction of the ball's motion can accelerate the ball.
weight's horizontal component = Friction force = (mass of ball)(acceleration)
The other component pushes the ball into the ramp, and the ramp pushes back.
If the ramp is horizontal, then the ball does not accelerate, as gravity pushes the ball into the ramp and not along the surface of the ramp. Hope this helps. Can u give me brainliest
Explanation:
Answer:
D) directly, inversely
Explanation:
The energy of a photon of light is directly proportional to its frequency and inversely proportional to its wavelength.
Frequency is the number of waves that passes through a point per unit of time.
Wavelength is the is the distance between successive crests or troughs on a wave.
Mathematically, frequency is related to wavelength and velocity using;
Energy = h x f
where h is the Planck's constant
f is the frequency
Since c = f ∧
where f is the frequency of the wave
∧ is the wavelength of the wave
c is the speed of light
So;
f = c/∧
Therefore;
E = 
From the equation, we see an inverse relationship between E and wavelength and a direct one with frequency.
Average speed = (total distance covered) / (total time to cover the distance) .
Total distance = (80 + 50 + 40) = 170 km
Total time = (1 + 0.5 + 0.5) = 2 hours
Average speed = (170 km) / (2 hrs) = 85 km/hr .