<h3>Answer</h3>
6.6 N pointing to the right
<h3>Explanation</h3>
Given that,
two forces acting of magnitude 3.6N
angle between them = 48°
To find,
the third force that will cause the object to be in equilibrium
<h3>1)</h3>
Find the vertical and horizontal components of the two forces
vertical force1 = sin(24)(3.6)
vertical force2= -sin(24)(3.6)
<em>(negative sign since it is acting on opposite direction)</em>
vertical force3 = sin(24)(3.6) - sin(24)(3.6)
= 0
<h3>2)</h3>
horizontal force1 = cos(24)(3.6)
horizontal force2= cos(24)(3.6)
horizontal force3 = cos(24)(3.6) + cos(24)(3.6)
= 2(cos(24)(3.6))
= 6.5775 N
≈ 6.6 N
<em />
<em />
The acceleration is 3.3 m/s2
Answer:
A. potential energy is 258720 Joule
Explanation:
A.Gravitational potential energy is: PE = m × g × h
velocity = 15.33 m/s when the car reaches the bottom of the hill.
where, m = mass
g = acceleration due to gravity
h = height from the bottom of hill.
The potential energy is : m×g×h
=(2200×9.8×12)
=258720 Joule
B. at the bottom of the hill, the potential energy is converted into kinetic energy so PE at top = KE at bottom
kinetic energy=
(
)
where v = velocity
m= mass
therefore, v=
or, v=
or, v=15.33 m/s
Answer:
The answer is C 1.8V and 0.38A
Answer:
D. mass to see how it affected stretch length of a rubber band