Answer:
Convex lens and convex mirrors are similar that
1. They have the same image characteristics at various object positions
2. They possess a positive focal length
3. Both their ray lines converge to a particular focal point
Answer:
Moreover, Boss says that even if Jupiter is proven to have a core, the planet still could have formed that core through disk instability. Enough dust could have collected and cemented together in the dense gas to form a core many times larger than the size of the Earth.
Explanation:
The same is true of most other objects in the solar system — except Jupiter. The gas giant is so big that it pulls the center of mass between it and the sun, also known as the barycenter, some 1.07 solar radii from the star's center — which is about 30,000 miles above the sun's surface.
69,911 km
69,911 kmJupiter/Radius
Let us consider two vectors A and B.
As per the question, the two vectors are perpendicular to each other.
Hence the angle between them 
We are asked to calculate the resultant of these two vectors.
As per parallelogram law of vector addition, the resultant of two vectors are-

[cos90=0]

This is the way by which we can add two perpendicular vectors.
Answer:
Explanation:
Give that,
Spring constant (k)=40N/m
Force applied =75N
Since the force is applied to the right, we don't know if it is compressing or stretching the spring
So let assume it compress
Using hooke's law
F=-ke
e=-F/k
Then, e=-75/40
e=-1.875m
The deformation is 1.875m.
Let assume it stretch
Using hooke's law
-F=-ke
e=F/k
Then, e=75/40
e=1.875m
The elongation is 1.875m
Answer:
Explanation:
A simple light microscope uses light for imaging of objects where as a transmission electron microscope uses a monochromatic beam of electrons.
This beam is passed by a magnetic field which is very strong and thus act as a lens.
Its resolution of very high which is about 0.2 nanometers because of the separation between two atoms.
Because of this reason its resolution is about 1000 times greater than light microscope.