Answer:
20
Step-by-step explanation:
For the sake of the problem, let's make female workers "x" and male workers "y".
x+y<40 This equation shows that the total number of workers has a max of 40.
30x+20y<1,000 This equation shows that the total cost the manager pays ($30 to each woman, $20 to each man) has a max of $1,000.
Now you can solve for x and y.
X+y<40
-y -y
X<-y+40
Substitute -y+40 in for X in the second equation
30(-y+40)+20y<1,000
-30y+1200+20y<1,000 Distribute
-10y+1,200<1,000 Combine like terms
-10y<-200 Subtract 1,200
y>20 Divide by -10; flip the sign
Since y>20, and y=male workers, you now know that the minimum
number of male workers he should send is 20
Y = 90 degrees
1) The angles on a straight line add to 180 degrees so 180-110= 70 degrees.
2) The angles in a triangle add to 180 degrees so 70+70= 140 degrees. The angle at the top of the triangle will have to be 40 degrees as 140+40= 180 degrees.
3) As x is half the angle at the top of the triangle (40 degrees), x will equal 20 degrees.
4) As the angles in a triangle add to 180 degrees 20+70=90 degrees 180-90=90 degrees.
5) Answer = 90 degrees
Answer: I am pretty sure it is 35 min
Step-by-step explanation: