Answer:
Explanation:
I think the answer is statement no 3.
Hope it helps.
Answer:
3.38m
Explanation:
Given parameters:
Time = 4s
Acceleration = 1.3m/s²
Unknown:
Magnitude of the displacement = ?
Solution:
The body starts at rest and the initial velocity is 0m/s. To solve this problem, we have to use the expression below;
S = Ut +
at²
S = displacement
t is the time
a is the acceleration
U is the initial velocity
V is the final velocity
Insert the parameters and solve;
S = (0 x 4) +
x 1.3² x 4 = 3.38m
Answer: 
Explanation:
Given
Distance between two speakers is 8 m
Man is standing 12 away from the wall
When the person moves 3 parallel to the wall
the parallel distances from the speaker become 4+3, 4-3
Now, the difference of distances from the speaker is

Condition for destructive interference is

for second destructive interference; n=2

Find alpha from ωf=ωi+αt
once you have it you can use: τ=Fr=89.0∗.1=Iα
to find I
The kinematics of the uniform motion allows us to find the final position vector
r = (-41.575 i + 42.253 j) m
Given parameters
- the starting position x = -17.5 m y = 23.1 m
- jump time t = 10.7 s
- The average velocities vₓ = -2.25 m / s and v_y = 1.79 m / s
to find
The uniform motion occurs when the velocity of the bodies is constant, in this case the relationship can be used for each axis
v =
x = x₀ + v t
Where vₓ it is the velocity, x the displacement, x₀ the initial position and t the time
Let's set a reference system with the horizontal x-axis. Regarding which we carry out the measurements
X axis
we look for the final position
x = x₀ + vₓ t
x = -17.5 -2.25 10.7
x = -41.575 m
Y Axis
we look for the final position
y = y₀ + v_y t
y = 23.1 + 1.79 10.7
y = 42.253 m
In conclusion, using the kinematics of uniform motion, find the final position vector
r = (-41.575 i + 42.253 j) m
learn more about uniform motion here:
brainly.com/question/17036013