Explanation:
a) <em>Fixed points</em> are the temperatures at which a thermometer is calibrated. They can refer either to the actual temperatures used for calibration, or the thermometer readings at those temperatures.
__
b) <em>Fundamental interval</em> is the difference between the fixed points. As with fixed points, it can refer either to the difference in actual temperature, or the difference in the corresponding thermometer readings.
Part 1
If water does not spill at the top point of the circular motion then for the minimum speed condition we can say normal force will be zero at the top position
given that
R = 1 m
g = 9.8 m/s^2
now from above equation we have
Part b)
for minimum value of angular speed we will have
Answer:
The intensity of the electric field is
Explanation:
The electric field equation is given by:
Where:
- k is the Coulomb constant
- q is the charge at 0.4100 m from the balloon
- d is the distance from the charge to the balloon
As we need to find the electric field at the location of the balloon, we just need the charge equal to 1.99*10⁻⁷ C.
Then, let's use the equation written above.
I hope it helps you!
Answer:
trigonometry (guessing)
Explanation:
ellipse: is the shape of an orbit : looks like an oval
periapsis : shortest distance between something like the moon and the planet its orbiting around like the earth
parallax is triangulation. like how gps works. looking at a star one day and then looking at it again 6 months later, an astronomer can see a difference in the viewing angle for the star. With trigonometry, the different angles yield a distance. This technique works for stars within about 400 light years of earth
https://science.howstuffworks.com/question224.htm
By comparing the intrinsic brightness to the star's apparent brightness we can calculate the distance of stars
1/r^2 rule states that the apparent brightness of a light source is proportional to the square of its distance.Jan 11, 2022
https://www.space.com/30417-parallax.html
alternative distance measurement for stars used by most astronomers is the parsec. A star with a parallax angle of 1 arcsecond has a distance of 1 parsec, or 1 parsec per arcsecond of parallax, which is about 3.26 light years
blossoms.mit.edu
.
A or possibly C because the other options have nothing to do with the size of the vibration. If i was you I would answer with A