The wave is equation with the given conditions is y = 0.02 cos ( 0 )
<u>Given data</u>
period T= 25.0ms
speed of 30.0 m/s
t = 0
x = 0
transverse position of 2.00cm
speed of 2.0 m/s = v
<h3>writing the wave function </h3>
frequency f = 1 / T
f = 1 / 25
f = 0.04Hz
Angular velocity = ω = 2 * pi * f
ω = 2 * pi * 0.04
ω = 0.251
wave number K = ω / v
k = 0.251 / 2
k = 0.126
The wave equation
y = A cos ( kx + ωt )
this is equivalent to
y = 0.02 cos ( 0.126 * 0 + 0.251 * 0 )
y = 0.02 cos ( 0 )
Read more on wave equation here: brainly.com/question/28167443
#SPJ4
<span>If an object is moving, the amount of kinetic energy it has directly depends upon which of the following factors?</span>
- the object's mass
- the object's velocity
Answer:
dβ = 70. 77 dβ
Explanation:
The intensity of sound in decibels is
dβ = 10 log I/I₀
let's look for the intensity of this signal
I / I₀ = 10 dβ/10
I / I₀ = 3.981 10⁶
the threshold intensity of sound for humans is I₀ = 1 10⁻¹² W / m²
I = 3.981 10 ⁶ 1 10⁻¹²
I = 3,981 10⁻⁶ W / m²
It is indicated that 3 cornets are placed in the circle, for which total intensity is
I_total - 3 I
I_total = 3 3,981 10⁻⁶
I_total = 11,943 10⁻⁶ W / m²
let's reduce to decibels
dβ = 10 log (11,943 10⁻⁶/1 10⁻¹²)
dβ = 10 7.077
dβ = 70. 77 dβ
Answer: 0 m/s
Explanation: The attached figure shows the position-time graph of a ladybug. We need to find the average speed of the ladybug between t = 4 s to t = 7 s.
We know that, the slope of a position-time graph gives velocity of an object. It can be given by :
In this case, the position of a ladybug at t = 4 s and at t = 7 s is the same i.e. 2 m.
It means its velocity is equal to at this time or we can say that ladybug is at rest.