If a2 -2ab + b2 = 9 and a![\begin{gathered} a^2-2ab+b^2=9 \\ aStep 1 factorize[tex]\begin{gathered} a^2-2ab+b^2=(a-b)^2 \\ \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20a%5E2-2ab%2Bb%5E2%3D9%20%5C%5C%20a%3C%2Fp%3E%3Cp%3E%EF%BB%BFStep%201%20%3C%2Fp%3E%3Cp%3Efactorize%3C%2Fp%3E%5Btex%5D%5Cbegin%7Bgathered%7D%20a%5E2-2ab%2Bb%5E2%3D%28a-b%29%5E2%20%5C%5C%20%20%5Cend%7Bgathered%7D)
then
[tex]\begin{gathered} (a-b)^2=9 \\ \sqrt{(a-b)^2}=\sqrt{9} \\ a-b=\pm3 \\ \\ aa-b=-3
Answer:
The Zscore for both test is the same
Step-by-step explanation:
Given that :
TEST 1:
score (x) = 75
Mean (m) = 65
Standard deviation (s) = 8
TEST 2:
score (x) = 75
Mean (m) = 70
Standard deviation (s) = 4
USING the relation to obtain the standardized score :
Zscore = (x - m) / s
TEST 1:
Zscore = (75 - 65) / 8
Zscore = 10/8
Zscore = 1.25
TEST 2:
Zscore = (75 - 70) / 4
Zscore = 5/4
Zscore = 1.25
The standardized score for both test is the same.
Answer:

Step-by-step explanation:


X=32
Explanation: X/9-1=4
X/8=4
8x4=32