Answer:
By transfecting small activating RNAs
Explanation:
Small activating RNAs (saRNAs) are an emerging class of non-coding RNAs (ncRNAs) that are capable of activating gene expression at transcriptional level. The saRNAs are small double-stranded RNAs (dsRNAs) that bind to promoter sequences in order to activate the expression of target genes. These molecules are structurally similar to small interfering RNAs (siRNAs), i.e., they also have a size of 21 nucleotides and two overhang nucleotides at the 3' end of both strands.
In general, yes, the dorsal blood vessel of a worm be seen from the worm's exterior because a worm's "skin" is very thin. Although of course there are exceptions.
Answer:
Cell respiration begins with Glycolysis
.
Explanation:
Glycolysis is the first and initial step in the cellular respiration. Cellular respiration is the anaerobic process, which takes place in cytosol of the cells. Two molecule of pyruvate(CH3COCOO-) are formed from 1 molecule of glucose(C6H12O6)through glycolysis. The NADH and ATP are high energy molecules formed when the free energy are released. It is the process which takes place through a series of ten enzyme catalysed reactions. 10 enzymes are required to break down the sugar molecule. It occurs in cytoplasm.
Answer:
There are two possible answers: Deep-sea vents provided the energy needed for the first organic compounds to form OR self-replicating RNA molecules passed on genetic information.
Explanation:
The reason for the first answer is due to the hypothesis that indicates that life (organic molecules) arose from inorganic molecules synthesized from the amino acids in those energy vents. This is called the metabolism first hypothesis. The Miller-Urey Experiment provided evidence that organisms could rise from inorganic molecules (they simulated under the conditions you would see on early Earth). The second hypothesis is the RNA World hypothesis (second answer) which suggests that the formation of RNA that could replicate (possible due to mutation or evolution), led to life that could preserve its genetic integrity through replication (greater stability to the organism) and create lipid bi-layer membranes/other organelles. Some scientists support the Metabolism First Hypothesis, while others are skeptical (this goes for the RNA World Hypothesis as well). However, the RNA World Hypothesis is for more reasonable in the fact that its main point is the fact that RNA molecules were able to replicate and maintain genetic stability despite early Earth conditions. Although either hypothesis could explain why all organisms share the same genetic code, the RNA World Hypothesis better explains the universality of DNA/RNA of genes that we see today.