Answer:
2.2 metres squared
Step-by-step explanation:
We need to find the area of this trapezoid.
The area of a trapezoid is denoted by:
, where
and
are the parallel bases and h is the height
Here, we already know the lengths of the two bases; they are 0.9 metres and 2.3 metres. However, we need to find the length of the height.
Notice that one of the angles is marked 45 degrees. Let's draw a perpendicular line from top endpoint of the segment labelled 0.9 to the side labelled 2.3. We now have a 45-45-90 triangle with hypotenuse 2.0 metres. As one of such a triangle's properties, we can divide 2.0 by √2 to get the length of both legs:
2.0 ÷ √2 = √2 ≈ 1.414 ≈ 1.4
Thus, the height is h = 1.4 metres. Now plug all these values we know into the equation to find the area:


The answer is thus 2.2 metres squared.
<em>~ an aesthetics lover</em>
Answer:
The answer is a trapezoid.



now, with that template above in mind, let's see this one

A=3, B=1, shrunk by AB or 3 units, about 1/3
C=2, horizontal shift by C/B or 2/1 or just 2, to the left
D=4, vertical shift upwards of 4 units
check the picture below
Answer:
A rectangle is defined by its length = L, and its width = W.
So the perimeter of the of the rectangle can be written as:
Perimeter = 2*L + 2*W.
In this case, we want to leave the perimeter fixed, so we have:
24ft = 2*L + 2*W.
Now, we do not have any other restrictions, so to know the different dimensions now we can write this as a function, by isolating one of the variables.
2*L = 24ft - 2*W
L = 12ft - W.
or:
L(W) = 12ft - W.
Such that:
W must be greater than zero (because we can not have negative or zero width).
And W must be smaller than 12ft (because in that case we would have zero or negative length)
Then the possible different dimensions are given by:
L(W) = 12ft - W
0ft < W < 12ft.