Answer:
a. If an object's speed is constant, then its acceleration must be zero.
FALSE
As we know that acceleration is defined as the rate of change in velocity

so we can not say anything about the acceleration when speed is given to as and no information is given about velocity
b. If an object's acceleration is zero, then its speed must be constant.
TRUE
As we know that acceleration is defined as the rate of change in velocity

Since we know that if acceleration is 0 then velocity must be constant and hence speed is also constant
c. If an object's velocity is constant, then its speed must be constant.
TRUE
Since velocity is constant then it shows that its magnitude and direction both are constant so its speed is also constant.
d. If an object's acceleration is zero, its velocity must be constant.
TRUE
As we know that acceleration is defined as the rate of change in velocity

Since we know that if acceleration is 0 then velocity must be constant
e. If an object's speed is constant, then its velocity must be constant.
FALSE
Speed is just the magnitude so we can not say about its direction and hence if speed is constant then velocity may or may not change
The velocities and the speed build a triangle, where the 1.7 m/s are the hypotenuse and the x-velocity and y-velocity are the other sides.
<span>So the x-velocity is: speed*cos(angle) </span>
<span>now plug in </span>
<span>x=1.7 m/s * cos(18.5)=1.597 m/s </span>
Answer:
≅50°
Explanation:
We have a bullet flying through the air with only gravity pulling it down, so let's use one of our kinematic equations:
Δx=V₀t+at²/2
And since we're using Δx, V₀ should really be the initial velocity in the x-direction. So:
Δx=(V₀cosθ)t+at²/2
Now luckily we are given everything we need to solve (or you found the info before posting here):
- Δx=760 m
- V₀=87 m/s
- t=13.6 s
- a=g=-9.8 m/s²; however, at 760 m, the acceleration of the bullet is 0 because it has already hit the ground at this point!
With that we can plug the values in to get:




Yes , increased tension suggests increased molecular attraction between the molecules of the ropes which affect the increase in the speed of wave.
Well formation of metallic bond depends on free electrons.smaal sized atoms hold their electrons more firmly as compared to large size atoms ,this z due to distance of outer shell electrons by nucleus..in this way no of free electrons affect strength of metallic bond..smaal sized atoms release less free electrons..