Answer:
1 = No 2 = Yes 3 = 1.88
Step-by-step explanation:
No, the expressions –0.5(3x 5) and –1.5x 2.5 are not equivalent.
Using the distributive property to expand the first expression, you would get -1.5x - 2.5. Since the constant term does not have the same sign as the second expression, the two expressions are not equivalent.
Also, if you substitute in a value for x and evaluate each expression, the values will not be equal.
Learn more about Equivalent:
brainly.com/question/26992243
#SPJ4
Wow !
OK. The line-up on the bench has two "zones" ...
-- One zone, consisting of exactly two people, the teacher and the difficult student.
Their identities don't change, and their arrangement doesn't change.
-- The other zone, consisting of the other 9 students.
They can line up in any possible way.
How many ways can you line up 9 students ?
The first one can be any one of 9. For each of these . . .
The second one can be any one of the remaining 8. For each of these . . .
The third one can be any one of the remaining 7. For each of these . . .
The fourth one can be any one of the remaining 6. For each of these . . .
The fifth one can be any one of the remaining 5. For each of these . . .
The sixth one can be any one of the remaining 4. For each of these . . .
The seventh one can be any one of the remaining 3. For each of these . . .
The eighth one can be either of the remaining 2. For each of these . . .
The ninth one must be the only one remaining student.
The total number of possible line-ups is
(9 x 8 x 7 x 6 x 5 x 4 x 3 x 2 x 1) = 9! = 362,880 .
But wait ! We're not done yet !
For each possible line-up, the teacher and the difficult student can sit
-- On the left end,
-- Between the 1st and 2nd students in the lineup,
-- Between the 2nd and 3rd students in the lineup,
-- Between the 3rd and 4th students in the lineup,
-- Between the 4th and 5th students in the lineup,
-- Between the 5th and 6th students in the lineup,
-- Between the 6th and 7th students in the lineup,
-- Between the 7th and 8th students in the lineup,
-- Between the 8th and 9th students in the lineup,
-- On the right end.
That's 10 different places to put the teacher and the difficult student,
in EACH possible line-up of the other 9 .
So the total total number of ways to do this is
(362,880) x (10) = 3,628,800 ways.
If they sit a different way at every game, the class can see a bunch of games
without duplicating their seating arrangement !
Answer:
As you can see, the curve and the line intersect at (3, 4) and (8, 9), so the two x values where they intercept are 3 and 8.
Not funny ^ :|... The answer would be the Gupta Empire..