Step 1:
Start by putting

in front of each term
![\frac{d}{dx}[y cos x]= \frac{d}{dx}[5x^2]+ \frac{d}{dx}[ 3y^2]](https://tex.z-dn.net/?f=%20%5Cfrac%7Bd%7D%7Bdx%7D%5By%20cos%20x%5D%3D%20%5Cfrac%7Bd%7D%7Bdx%7D%5B5x%5E2%5D%2B%20%5Cfrac%7Bd%7D%7Bdx%7D%5B%203y%5E2%5D)
-----------------------------------------------------------------------------------------------------------------
Step 2:
Deal with the terms in 'x' and the constant terms
![\frac{d}{dx}[ycosx]= 10x+ \frac{d}{dx} [3y^2]](https://tex.z-dn.net/?f=%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bycosx%5D%3D%2010x%2B%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5B3y%5E2%5D%20%20)
----------------------------------------------------------------------------------------------------------------
Step 3:
Use the chain rule for the terms in 'y'
![\frac{d}{dx}[ycosx]=10x+6y \frac{dy}{dx}](https://tex.z-dn.net/?f=%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bycosx%5D%3D10x%2B6y%20%5Cfrac%7Bdy%7D%7Bdx%7D%20%20)
--------------------------------------------------------------------------------------------------------------
Step 4:
Use the product rule on the term in 'x' and 'y'


--------------------------------------------------------------------------------------------------------------
Step 5:
Rearrange to make

the subject


![[cos(x) - 6y] \frac{dy}{dx}=10x + y sin(y)](https://tex.z-dn.net/?f=%5Bcos%28x%29%20-%206y%5D%20%20%5Cfrac%7Bdy%7D%7Bdx%7D%3D10x%20%2B%20y%20sin%28y%29%20)

⇒ Final Answer
Answer:
$28.12
Step-by-step explanation:
$9.19 x 40 = $367.60 x 7.65% = $28.12
The geometric mean of 8 and 253 is;
<h3>Geometric mean of numbers</h3>
According to the question;
- The task requires that the geometric mean of 8 and 253 be determined.
The geometric mean of a two numbers is the square root the product of the he numbers.
Hence, in this scenario;
The geometric mean of 8 and 253 is;
G.M = 45.
Ultimately, the geometric mean of 8 and 253 is approximately 45.
Read more on geometric mean;
brainly.com/question/23483761
3240 star wars tickets divided into 5400 total tickets = .6 × 100 = 60%
May the Force be with you.
Answer:
$122.88
Step-by-step explanation:
the phone decreases by 20% each year , that is
(100 - 20)% = 80% =
= 0.8
the phone reduces by a factor of 0.8 each year , then after 4 years
value = $300 ×
= $122.88