Answer:
10
Step-by-step explanation:
10
<span>Diagonals of a rhombus are perpendicular and bisect each other. This means this rhombus is composed of four right triangles with legs of length 6 cm and 8 cm, with their hypotenuses forming the perimeter of the rhombus. The Pythagorean theorem a^2+ b^2 = c^2 can be used to find the length of the hypotenuse. 6^2+8^2 = 36+64 = 100. The square root of 100 is 10, so the length of a side of the rhombus is 10 cm.</span>
Answer:
a)0.7
b) 10.03
c) 0.0801
Step-by-step explanation:
Rate of return Probability
9.5 0.1
9.8 0.2
10 0.3
10.2 0.3
10.6 0.1
a.
P(Rate of return is at least 10%)=P(R=10)+P(R=10.2)+P(R=10.6)
P(Rate of return is at least 10%)=0.3+0.3+0.1
P(Rate of return is at least 10%)=0.7
b)
Expected rate of return=E(x)=sum(x*p(x))
Rate of return(x) Probability(p(x)) x*p(x)
9.5 0.1 0.95
9.8 0.2 1.96
10 0.3 3
10.2 0.3 3.06
10.6 0.1 1.06
Expected rate of return=E(x)=sum(x*p(x))
Expected rate of return=0.95+1.96+3+3.06+1.06=10.03
c)
variance of the rate of return=V(x)=![sum(x^2p(x))-[sum(x*p(x))]^2](https://tex.z-dn.net/?f=sum%28x%5E2p%28x%29%29-%5Bsum%28x%2Ap%28x%29%29%5D%5E2)
Rate of return(x) Probability(p(x)) x*p(x) x²*p(x)
9.5 0.1 0.95 9.025
9.8 0.2 1.96 19.208
10 0.3 3 30
10.2 0.3 3.06 31.212
10.6 0.1 1.06 11.236
sum[x²*p(x)]=9.025+19.208+30+31.212+11.236=100.681
variance of the rate of return=V(x)=sum(x²*p(x))-[sum(x*p(x))]²
variance of the rate of return=V(x)=100.681-(10.03)²
variance of the rate of return=V(x)=100.681-100.6009
variance of the rate of return=V(x)=0.0801
The total amount Allen will need to pay for the video game is $48.96 as 49-0.1+0.06=48.96
(a)

or, via symmetry

____________
(b)
By the chain rule:

For polar coordinates, x = rcosθ and y = rsinθ. Since
<span>r = 3 + 2cosθ, it follows that

Differentiating with respect to theta

2/3 is the slope
____________
(c)
"</span><span>distance between the particle and the origin increases at a constant rate of 3 units per second" implies dr/dt = 3
A</span>ngle θ and r are related via <span>r = 3 + 2cosθ, so implicitly differentiating with respect to time
</span><span />