Answer:
Verified below
Step-by-step explanation:
We want to show that (Cos2θ)/(1 + sin2θ) = (cot θ - 1)/(cot θ + 1)
In trigonometric identities;
Cot θ = cos θ/sin θ
Thus;
(cot θ - 1)/(cot θ + 1) gives;
((cos θ/sin θ) - 1)/((cos θ/sin θ) + 1)
Simplifying numerator and denominator gives;
((cos θ - sin θ)/sin θ)/((cos θ + sin θ)/sin θ)
This reduces to;
>> (cos θ - sin θ)/(cos θ + sin θ)
Multiply top and bottom by ((cos θ + sin θ) to get;
>> (cos² θ - sin²θ)/(cos²θ + sin²θ + 2sinθcosθ)
In trigonometric identities, we know that;
cos 2θ = (cos² θ - sin²θ)
cos²θ + sin²θ = 1
sin 2θ = 2sinθcosθ
Thus;
(cos² θ - sin²θ)/(cos²θ + sin²θ + 2sinθcosθ) gives us:
>> cos 2θ/(1 + sin 2θ)
This is equal to the left hand side.
Thus, it is verified.
Answer:
3
Step-by-step explanation:
X = number of loads
company A : 20x + 8
company B : 24x + 4
20x + 8 = 20(5) + 8 = 100 + 8 = 108 (company A)
24x + 4 = 24(5) + 4 = 120 + 4 = 124 (company B)
company A charges less
20x + 8 = 20(9) + 8 = 188
24x + 4 = 24(9) + 4 = 220
220 - 188 = $ 32 bucks is saved by using company A