Answer: (3x + 11y)^2
Demonstration:
The polynomial is a perfect square trinomial, because:
1) √ [9x^2] = 3x
2) √121y^2] = 11y
3) 66xy = 2 *(3x)(11y)
Then it is factored as a square binomial, being the factored expression:
[ 3x + 11y]^2
Now you can verify working backwar, i.e expanding the parenthesis.
Remember that the expansion of a square binomial is:
- square of the first term => (3x)^2 = 9x^2
- double product of first term times second term =>2 (3x)(11y) = 66xy
- square of the second term => (11y)^2 = 121y^2
=> [3x + 11y]^2 = 9x^2 + 66xy + 121y^2, which is the original polynomial.
Answer:
the first ones >
Step-by-step explanation:
the second ones <
Answer:
answers
Step-by-step explanation:
We are asked to find unknown or the missing number to complete the polynomial given in the problem which is x² + ?x -49. First, let us equate the number to be equal to zero such as it would become x² + ?x - 49 = 0. Next, we need to find the factors such that it would produce a difference of squares and these two factors are a = +7 and b = -7. Hence, the complete solution is shown below:
(x + 7) (x-7) = 0
perform distribution and multiplication of terms such as shown below:
x² + 7x - 7x - 49 = 0
Combine the same term such as we can either add or subtract +7x to -7x and the result will be equal to 0x.
x² + 0x - 49 = 0
Therefore, the missing number is 0. The answer is 0 which will result to x² +0x - 49.