1 42.5* and 3 95*, the sum of all the angles =360*, so Angle J = L and M=K, Angle 1 =M/2
So, 4/3 - 2i
4/3 - 2i = 12/13 + i8/13
multiply by the conjugate:
3 + 2i/3 + 2i
= 4(3 + 2i)/(3 - 2i) (3 + 2i)
(3 - 2i) (3 + 2i) = 13
(3 - 2i) (3 + 2i)
apply complex arithmetic rule: (a + bi) (a - bi) = a^2 + b^2
a = 3, b = - 2
= 3^2 + (- 2)^2
refine: = 13
= 4(3 + 2i)/13
distribute parentheses:
a(b + c) = ab + ac
a = 4, b = 3, c = 2i
= 4(3) + 4(2i)
Simplify:
4(3) + 4(2i)
12 + 8i
4(3) + 4(2i)
Multiply the numbers: 4(3) = 12
= 12 + 2(4i)
Multiply the numbers: 4(2) = 8
= 12 + 8i
12 + 8i
= 12 + 8i/13
Group the real par, and the imaginary part of the complex numbers:
Your answer is: 12/13 + 8i/13
Hope that helps!!!
Answer:
15 and 6
Step-by-step explanation:
Answer:
48
Step-by-step explanation:
66*2=132
180-132=48
Hope this helps!
If not, I am sorry.
Answer:
Second option: On a coordinate plane, rectangle A'B'C'D' prime has points
(See the graph attached)
Step-by-step explanation:
For this exercise it is importnat to know that a Dilation is defined as a transformation in which the Image (The figure obtained after the transformation) has the same shape as the Pre-Image (which is the original figure before the transformation), but they have different sizes.
In this case, you know that the vertices of the rectangle ABCD ( The Pre-Image) are the following:

Therefore, to find the vertices of the rectangle A'B'C'D' (The Image) that results of dilating the rectangle ABCD by a factor of 4 about the origin, you need to multiply the coordinates of each original vertex by 4. Then, you get:

Finally, knowing those points, you can identify that the graph that shows the result of that Dilation, is the one attached.