<span>aerobic respiration requires oxygen.</span>
Answer:I think it is A DNA molecule 5
sorry if I am wrong
<span>The total number of genes present in a population is called the gene pool. Hope this helps </span>
Answer:
Active transport:
- requires energy
- molecules move from low to high concentration sides
- Na+ and K+ move by active transport
Simple diffusion:
- molecules move from high to low concentration sides
- molecules pass between lipids
- small non-polar and polar molecules
Facilitated diffusion:
- molecules move from high to low concentration sides
- involves channel proteins
- move large molecules
Explanation:
- Simple Diffusion is the pathway of only small molecules that freely move through the membrane by momentary openings produced by the lipids' movements. Diffusion is a slow process that requires short distances and pronounced concentration gradients to be efficient. An example of diffusion is osmosis by which water is the transported molecule.
- Facilitated diffusion is the transport of hydrophilic molecules that can not freely cross the membrane. Channel protein and many carrier proteins are in charge of this transport. When uncharged molecules cross the membrane, they do it according to their concentration gradients, going from the more concentrated side to the lower concentrated one. When ions need to cross the membrane, the process depends on an electrochemical gradient. Glucose is an example of a hydrophilic protein that gets into the cell by facilitated diffusion.
Simple diffusion and facilitated diffusion are both passive transport processes because they only depend on electrochemical gradients, so they do not need any energy to occur.
- Active transport is the transport of molecules that move against the electrochemical gradient, so it does need energy to happen. Molecules move from the lower concentration side to the higher concentration side of the membrane. Carrier proteins are in charge of active transport. The needed energy might proceed from the ATP molecules or the membrane's electric potential. An example of molecules moved by active transport are the Na and K.
This is a type III hypersensitivity reaction mediated by immune complex deposits. Immune complexes are antigen-antibody (commonly IgG) complexes that are soluble and prone to deposition in multiple organs. Once immune complexes are deposited in an organ, neutrophils and macrophages will then attack the organ causing organ damage and eventually failure. Type III hypersensitivity reactions are characteristic in SLE and other autoimmune diseases such as rheumatoid arthritis, etc.
Other types are type I hypersensitivity which are mediated by mast cells and histamine with the involvement of IgE and this commonly happens in allergic reactions. Type II hypersensitivity is cytotoxic hypersensitivity wherein antibodies directly attack organs (not forming immune complexes). Type IV hypersensitivity (or cell-mediated toxicity) involves T-lymphocytes. This is a delayed type of hypersensitivity exemplified by reactions from <em>M. tuberculosis</em> bacilli in tuberculous disease.