Answer:
P=0.147
Step-by-step explanation:
As we know 80% of the trucks have good brakes. That means that probability the 1 randomly selected truck has good brakes is P(good brakes)=0.8 . So the probability that 1 randomly selected truck has bad brakes Q(bad brakes)=1-0.8-0.2
We have to find the probability, that at least 9 trucks from 16 have good brakes, however fewer than 12 trucks from 16 have good brakes. That actually means the the number of trucks with good brakes has to be 9, 10 or 11 trucks from 16.
We have to find the probability of each event (9, 10 or 11 trucks from 16 will pass the inspection) . To find the required probability 3 mentioned probabilitie have to be summarized.
So P(9/16 )= C16 9 * P(good brakes)^9*Q(bad brakes)^7
P(9/16 )= 16!/9!/7!*0.8^9*0.2^7= 11*13*5*16*0.8^9*0.2^7=approx 0.02
P(10/16)=16!/10!/6!*0.8^10*0.2^6=11*13*7*0.8^10*0.2^6=approx 0.007
P(11/16)=16!/11!/5!*0.8^11*0.2^5=13*21*16*0.8^11*0.2^5=approx 0.12
P(9≤x<12)=P(9/16)+P(10/16)+P(11/16)=0.02+0.007+0.12=0.147
Answer:
the answer is c)SAS
Step-by-step explanation:
as the sides are already given and and both angles will be equal as vertically opposite angles (VOA)are always equal.
Here you go, hope I helped.
Answer: 
Step-by-step explanation:
Since, The LCM of numbers given numbers
,
,
and
is
.
Thus, the number that gives 1 as reminder and is the multiple of 7 is 
Where n is any positive integer,
Since, For
,
The number is, 
Which is divisible by
.
Thus, the required number is 301.
Note : For n = 1, 2 3 and 4, numbers are 61, 121, 181 and 241
But they are not the multiple of 7.