All evolutionary changes that allow a species to change in response to the environment, are originally a result of beneficial DNA mutations.
Beneficial genetic (DNA) mutations are result in individuals with special characteristics that allow them to survive better in the environment so they pass their genes to the next generation.
Here's a fictional example I made just for you!: Lets say you have an alien species called Hibas. They are jelly blobs that float around, don't move, and open their mouths to capture neon shrimps that happen to swim into their mouths. But one day a certain Hiba developed some muscles through a genetic mutation. It was able to "wiggle" through the water and steer itself instead of floating around. This allowed it to eat more neon shrimp than the other Hibas, so it grew faster and was able to reproduce faster. It's kids also had muscles and had an advantage so they reproduced faster then the other Hibas. Eventually the whole Hiba species started to have muscles because the ones that didn't weren't able to compete and did not survive as well.
The reason that most of the Hibas developed muscles was because one of them had a mutation that allowed it to have muscles. This was a BENEFICIAL mutation that allowed it to SURVIVE BETTER.
Answer:
it is the base unit of temperature .
Explanation:
you can change celisus into kelvin by doing a quick math .
K = °C + 273
Answer:
It is most likely C
Explanation:
People get sick and maybe the twin/sibling has a medical condition that may interrupt the experiment.
⭐️The answer is⭐️
Three of the four nitrogenous bases that make up RNA — adenine (A), cytosine (C), and guanine (G) — are also found in DNA. In RNA, however, a base called uracil (U) replaces thymine (T) as the complementary nucleotide to adenine (Figure 3).
Almost all enzymes will end in -ase but not all, some examples of enzymes are:
catalase
lactase
maltase
dna polymerase
amylase
lipase
trypsin
acetylcholinesterase