Answer:
0.9538
Step-by-step explanation:
The computation of the proportion of variation in labor hours is explained by the number of cubic feet moved is shown below:
Here the R^2 coefficient of determination, would be determined and applied the same
R^2 = 1 - SSE ÷ SST
= 1 - 123.97 ÷ 2685.9
= 0.9538
No a polygon only has 3 sides and 3 angles.
Answer:
18 hours
Step-by-step explanation:
Split up the integration interval into 4 subintervals:
![\left[0,\dfrac\pi8\right],\left[\dfrac\pi8,\dfrac\pi4\right],\left[\dfrac\pi4,\dfrac{3\pi}8\right],\left[\dfrac{3\pi}8,\dfrac\pi2\right]](https://tex.z-dn.net/?f=%5Cleft%5B0%2C%5Cdfrac%5Cpi8%5Cright%5D%2C%5Cleft%5B%5Cdfrac%5Cpi8%2C%5Cdfrac%5Cpi4%5Cright%5D%2C%5Cleft%5B%5Cdfrac%5Cpi4%2C%5Cdfrac%7B3%5Cpi%7D8%5Cright%5D%2C%5Cleft%5B%5Cdfrac%7B3%5Cpi%7D8%2C%5Cdfrac%5Cpi2%5Cright%5D)
The left and right endpoints of the
-th subinterval, respectively, are


for
, and the respective midpoints are

We approximate the (signed) area under the curve over each subinterval by

so that

We approximate the area for each subinterval by

so that

We first interpolate the integrand over each subinterval by a quadratic polynomial
, where

so that

It so happens that the integral of
reduces nicely to the form you're probably more familiar with,

Then the integral is approximately

Compare these to the actual value of the integral, 3. I've included plots of the approximations below.