Answer:
a) vprom = - 0.6 [m/s] b) ver explicacion c) vf = 10.8 [m/s]
Explanation:
Para poder solucionar este problema debemos completar el enunciado del problema así como la pregunta, realizando una búsqueda en Internet encontramos el enunciado completo, así como la pregunta.
"Una pelota que se desliza hacia arriba por una pendiente se halla inicialmente a 6 m de la parte más baja de dicha pendiente y tiene una velocidad de 4 m/s. Cinco segundos después se encuentra a 3 m de la parte más baja. Si suponemos una aceleración constante, "
¿cual fue la velocidad media?
¿Cuál es el significado de una velocidad media negativa?
¿Cuáles son la aceleración media y la velocidad final?
Para facilitar esta solución debemos realizar un esquema del movimiento de la pelota en el plano inclinado. En la imagen adjunta se puede ver un esquema del movimiento de la pelota sobre el plano inclinado en los diferentes tiempos mencionados.
<u>¿cual fue la velocidad media?</u>
<u />
La velocidad media se debe calcular utilizando la expresión de velocidad = espacio / tiempo.
![v_{prom}=x/t\\v_{prom}=(3-6)/5\\v_{prom}=-0.6 [m/s]](https://tex.z-dn.net/?f=v_%7Bprom%7D%3Dx%2Ft%5C%5Cv_%7Bprom%7D%3D%283-6%29%2F5%5C%5Cv_%7Bprom%7D%3D-0.6%20%5Bm%2Fs%5D)
<u>¿Cuál es el significado de una velocidad media negativa? </u>
La velocidad media negativa significa que se dirige hacia abajo en sentido contrario
<u>¿Cuáles son la aceleración media y la velocidad final?</u>
<u />
![x=v_{o}*t+0.5*a*t^{2} \\-3=(4)*(5)+0.5*a*(5)^2\\a=1.36[m/s^2]\\\\Velocity\\v_{f}=v_{o}+a*t = 4+(1.36*5)\\v_{f}=10.8[m/s]](https://tex.z-dn.net/?f=x%3Dv_%7Bo%7D%2At%2B0.5%2Aa%2At%5E%7B2%7D%20%5C%5C-3%3D%284%29%2A%285%29%2B0.5%2Aa%2A%285%29%5E2%5C%5Ca%3D1.36%5Bm%2Fs%5E2%5D%5C%5C%5C%5CVelocity%5C%5Cv_%7Bf%7D%3Dv_%7Bo%7D%2Ba%2At%20%3D%204%2B%281.36%2A5%29%5C%5Cv_%7Bf%7D%3D10.8%5Bm%2Fs%5D)
Answer:
t=L/
Explanation:
<u>solution:</u>
Let E be an observer, and B a second observer traveling with velocity
as measured by E. If E measures the velocity of an object A as
then B will measure A velocity as
=
-
Applied here,
the walkway (W) and the man (M) are moving relative to Earth (E}, the velocity of the man relative to the moving walkway is
=
-
,

The time required for the woman, traveling at constant speed
relative to the ground, to travel distance L relative to the ground is
:
t=L/
Walking at a speed of 2.1 m/s, in the first 2 s John would have walked
(2.1 m/s) (2 s) = 4.2 m
Take this point in time to be the starting point. Then John's distance from the starting line at time <em>t</em> after the first 2 s is
<em>J(t)</em> = 4.2 m + (2.1 m/s) <em>t</em>
while Ryan's position is
<em>R(t)</em> = 100 m - (1.8 m/s) <em>t</em>
where Ryan's velocity is negative because he is moving in the opposite direction.
(b) Solve for the time when they meet. This happens when <em>J(t)</em> = <em>R(t)</em> :
4.2 m + (2.1 m/s) <em>t</em> = 100 m - (1.8 m/s) <em>t</em>
(2.1 m/s) <em>t</em> + (1.8 m/s) <em>t</em> = 100 m - 4.2 m
(3.9 m/s) <em>t</em> = 95.8 m
<em>t</em> = (95.8 m) / (3.9 m/s) ≈ 24.6 s
(a) Evaluate either <em>J(t)</em> or <em>R(t)</em> at the time from part (b).
<em>J</em> (24.6 s) = 4.2 m + (2.1 m/s) (24.6 s) ≈ 55.8 m
Explanation:
Given that,
The force exerted by the stick on the puck is 975 N
The stick is in contact with the puck for 0.0049 s
Initial speed of the puck, u = 0 (at rest)
(a) We need to find the impulse imparted by the stick to the puck.
Impulse = Force × time
J = 4.7775 kg-m/s
(b) Mass of the puck, m = 1.76 kg
We need to find the speed of the puck just after it leaves the hockey stick.
Let the speed be v.
As impulse is equal to the change in momentum.

So, when the puck leaves the hockey stick its speed is 2.86 m/s.
Explanation:
It is given that,
Initial speed of a golfer, u = 29 m/s
If it travels the maximum possible distance before landing. It means that it is projected at an angle of 45 degrees.
(a) We need to find the time spent by the ball in the air. It can be calculated by using second equation of motion.

Here,
a = -g
s = 0 (it is displacement and it is equal to 0 as the ball lands on the green).
So,

So, it will take 4.184 seconds in the air.
(b) let x is the longest hole in one that the golfer can make if the ball does not roll when it hits the green. It can be given by :

Hence, this is the required solution.