Answer:
Explanation:
Given
Length of plank is 1.6 m
Force is applied on the left side of plank
Force is applied 43 cm from the left end O.
Mass of the plank is
for equilibrium
Net torque must be zero. Taking torque about left side of the plank
Net vertical force must be zero on the plank
electric field lines are graphical presentation of electric field intensity
It is the graphical way to represent the electric field variation
If we draw the tangent to electric field line then it will give the direction of net electric field at that point
So whenever we draw the electric field lines of a charge distribution then it will always follow this basic properties
here we will always follow these basic properties of field lines
now as we can see that here two positive charges are placed nearby so the electric field must be like it can not intersect at any point because at intersection of two lines the direction of electric field not defined
As we have two directions of tangents at that point
So here the incorrect presentation is the intersection of two field lines which is not possible
Answer:
option a is correct
Explanation:
<h2>I hope it's help you ❣️❣️</h2>
Answer:
the claim is not valid or reasonable.
Explanation:
In order to test the claim we will find the maximum and actual efficiencies. maximum efficiency of a heat engine can be found as:
η(max) = 1 - T₁/T₂
where,
η(max) = maximum efficiency = ?
T₁ = Sink Temperature = 300 K
T₂ = Source Temperature = 400 K
Therefore,
η(max) = 1 - 300 K/400 K
η(max) = 0.25 = 25%
Now, we calculate the actual frequency of the engine:
η = W/Q
where,
W = Net Work = 250 KJ
Q = Heat Received = 750 KJ
Therefore,
η = 250 KJ/750 KJ
η = 0.333 = 33.3 %
η > η(max)
The actual efficiency of a heat engine can never be greater than its Carnot efficiency or the maximum efficiency.
<u>Therefore, the claim is not valid or reasonable.</u>
Answer:
(1) A sound wave a mechanical wave because mechanical waves rely on particle interaction to transport their energy, they cannot travel through regions of space that are void of particles. Sound is a mechanical wave and cannot travel through a vacuum. These particle-to-particle, mechanical vibrations of sound conductance qualify sound waves as mechanical waves. Sound energy, or energy associated with the vibrations created by a vibrating source, requires a medium to travel, which makes sound energy a mechanical wave. The answer is(B) it travels in the medium.
(2) An ocean wave is an example of a mechanical transverse wave
The compression is the part of the compressional wave where the particles are crowded together. The rarefaction is the part of the compressional wave where the particles are spread apart. The answer is (C) Compression.