Answer:
- 1.07 ft
Explanation:
V1 = (-5, 7, 2)
V2 = (3, 1, 2)
Projection of v1 along v2, we use the following formula
=\frac{\overrightarrow{V1}.\overrightarrow{V2}}{V2}
So, the dot product of V1 and V2 is = - 5 (3) + 7 (1) + 2 (2) = -15 + 7 + 4 = -4
The magnitude of vector V2 is given by
= 
So, the projection of V1 along V2 = - 4 / 3.74 = - 1.07 ft
Thus, the projection of V1 along V2 is - 1.07 ft.
so we need to find the direction of v2
It should be 0.25kg because you converter from g to kg and since 1g<1kg so you move the decimal to the left
And because of gravity it falls back down to the earth.
Answer:
Explanation:
Given
Initial speed 
distance traveled before coming to rest 
using equation of motion

where v=final velocity
u=initial velocity
a=acceleration
s=displacement

for 
using same relation we get

divide 1 and 2 we get


So a distance if 213.32 ft is required to stop the vehicle with 80 mph speed