Answer:
<h2> †•°⁜Hewo there!⁜°•†</h2>
____________________________________________________________
<h3>
¤0.018¤</h3>
____________________________________________________________
†•°-Love Ash or Ashlynn-°•†
P.S (Have A great day!!)
Answer:
1.2 × 10⁴ cal
Explanation:
Given data
- Initial temperature: 80 °C
We can calculate the heat released by the water (
) when it cools using the following expression.

where
c is the specific heat capacity of water (1 cal/g.°C)

According to the law of conservation of energy, the sum of the heat released by the water (
) and the heat absorbed by the reaction (
) is zero.

Hello friend ☺
ΔH = MCΔT
ΔH = to the amount of energy or change in energy (J)
mass of water
C = waters specific heat capacity
ΔT = change in temperature
and so ΔH = 25 × 4.18 × ( 112-67 ) J = 4702.5 J
Thanks ❤
The mean kinetic energy per molecule is , where is the Boltzmann constant and T is the absolute temperature.
So at 1000°C, the T = 1273.15 K, kB=1.38 × 10-23, therefore the mean kinetic energy is 2.635 × 10⁻²⁰J.
<h3><u>
What is Kinetic energy ?</u></h3>
The energy an item has as a result of motion is known as kinetic energy.
A force must be applied to an item in order to accelerate it. We must put forth effort in order to apply a force. After the job is finished, energy is transferred to the item, which then moves at a new, constant speed. Kinetic energy is the type of energy that is transmitted and is dependent on the mass and speed attained.
Kinetic energy may be converted into other types of energy and transported between things. A flying squirrel may run into a chipmunk that is standing still, for instance. Some of the squirrel's original kinetic energy may have been transferred to the chipmunk or changed into another kind of energy after the impact.
To view more about kinetic energy, refer to;
brainly.com/question/2972267
#SPJ4