Minerals are identified according to their properties. One of these properties is their breaking tendency: <em>cleavage</em><em> or </em><em>fracture</em>.<em> Cleavage: Calcite, mica, muscovita, pyroxene. Fracture: Quartz, Asbestos, Limestone.</em>
<u><em>Note</em></u><em>: Since I do not know which your 10 minerals are, I will provide examples of each type according to the breaking tendency.</em>
Many properties of minerals are used to identify them, such as <em>color, density, hardness,</em> among others. In this case, we are talking about their <u>breaking tendency.</u>
<h3 /><h3>How do minerals break?</h3><h3 />
- Minerals can cleave or fracture.
- A type of mineral breaks always in the same, and this is why the breaking tendency is useful to identify them.
<h3 />
<u>- Cleavage</u>
- The mineral breaks in flat smooth planes.
- Cleavage direction and smoothness of surfaces are significant when identifying.
<u>- Fracture</u>
- The mineral break in irregular planes.
- In these minerals, there is no particular breaking direction.
<h2 /><h3>Examples</h3>
<u>- Cleavage</u>
<u>- Fracture</u>
You can learn more about fracture and cleavage at
brainly.com/question/22061284
brainly.com/question/2311110
They help each other survive in the ocean. The fish help the sea anemone more though.
Answer:
A. I, II, III, and V only
Explanation:
In genetics, an allele refers to the specific form of a gene, which encodes traits. These alleles are usually in pairs in a diploid organism i.e. an organism with two sets of chromosomes. According to Gregor Mendel,
- An allele can either be DOMINANT when the allele masks the phenotypic expression of its allelic pair while the allele that is masked is said to be RECESSIVE.
- Two alleles can also be CO-DOMINANT when the two alleles are neither dominant or recessive over one another but are simultaneously expressed in that particular gene.
- Alleles can also be INCOMPLETELY DOMINANT when one allele is not completely dominant over the other, hence, forms a third intermediate phenotype when in combination with the second allele i.e. in an heterozygous state.
Based on this, an allele can be dominant (I), recessive (II), codominant (III), and incompletely dominant (V).