Answer:
The speeds of the cars is: 0.625 miles/minute
Step-by-step explanation:
We use systems of equations in two variables to solve this problem.
Recall that the definition of speed (v) is the quotient of the distance traveled divided the time it took :
. Notice as well that the speed of both cars is the same, but their times are different because they covered different distances. So if we find the distances they covered, we can easily find what their speed was.
Writing the velocity equation for car A (which reached its destination in 24 minutes) is:

Now we write a similar equation for car B which travels 5 miles further than car A and does it in 32 minutes:

Now we solve for
in this last equation and make the substitution in the equation for car A:

So this is the speed of both cars: 0.625 miles/minute
Answer:
y=2x+7
Step-by-step explanation:
When an equation is parallel to another, it shares the same slope.
Our original line is y=2x-8, and it is in slope-intercept form (y=mx+b)
This means that our slope is 2 because m represents the slope.
The slope of our parallel line will then also be 2.
<u>We can begin to plug that into point-slope form which is:</u>
y - y1 = m(x - x1)
This is where (x1, y1) is a point the line intersects, and m is the slope.
<u>Plugging in the slope, we'll have:</u>
y - y1 = 2(x - x1)
We also know it intersects the point (-4, -1)
We can plug this into our equation as well.
y - (-1) = m(x - (-4))
y+1=2(x+4)
<u>Now, we can simplify it into slope-intercept form:</u>
y+1=2(x+4)
Distribute
y+1=2x+8
Subtract 1 from both sides
y=2x+8-1
y=2x+7
The correct answer is 41/25
The first thing you want to do is isolate the (x)s.