Answer: The molarity of KBr in the final solution is 1.42M
Explanation:
We can calculate the molarity of the KBr in the final solution by dividing the total number of moles of KBr in the solution by the final volume of the solution.
We will first calculate the number of moles of KBr in the individual sample before mixing together
In the first sample:
Volume (V) = 35.0 mL
Concentration (C) = 1.00M
Number of moles (n) = C × V
n = (35.0mL × 1.00M)
n= 35.0mmol
For the second sample
V = 60.0 mL
C = 0.600 M
n = (60.0 mL × 0.600 M)
n = 36.0mmol
Therefore, we have (35.0 + 36.0)mmol in the final solution
Number of moles of KBr in final solution (n) = 71.0mmol
Now, to get the molarity of the final solution , we will divide the total number of moles of KBr in the solution by the final volume of the solution after evaporation.
Therefore,
Final volume of solution (V) = 50mL
Number of moles of KBr in final solution (n) = 71.0mmol
From
C = n / V
C= 71.0mmol/50mL
C = 1.42M
Therefore, the molarity of KBr in the final solution is 1.42M
According to Dalton's Law, in a mixture of non-reacting gasses, thetotal pressure<span> exerted is the sum of the </span>partial pressures<span> of the component gasses. In more complicated circumstances, equilibrium states come into effect, but fortunately for us, </span>oxygen<span> is non-reactive with </span>water vapor<span>.</span>
Because subatomic particles ARE what make up atoms.
Answer:
6.564×10¹⁶ fg.
Explanation:
The following data were obtained from the question:
Mass of beaker = 76.9 g
Mass of beaker + salt = 142.54 g
Mass of salt in fg =?
Next, we shall determine the mass of the salt in grams (g). This can be obtained as follow:
Mass of beaker = 76.9 g
Mass of beaker + salt = 142.54 g
Mass of salt =?
Mass of salt = (Mass of beaker + salt) – (Mass of beaker)
Mass of salt = 142.54 – 76.9
Mass of salt = 65.64 g
Finally, we shall convert 65.64 g to femtograms (fg) as illustrated below:
Recall:
1 g = 1×10¹⁵ fg
Therefore,
65.64 g = 65.64 g × 1×10¹⁵ fg / 1g
65.64 g = 6.564×10¹⁶ fg
Therefore, the mass of the salt is 6.564×10¹⁶ fg.