Answer:
Increase is the answer
Explanation:
Increase is the answer hopes this helps you
The atomic number of Li is 3
Electron configuration of Li : 1s² 2s¹
The atomic number of Na is 11
Electron configuration of Na : 1s²2s²2p⁶3s¹
Thus there is one electron in the valence shell of Li (2s¹) and that of Na (3s¹). However, the valence electron in Na is in a shell that is farther away from the nucleus compared to that of Li. As a result, the Na valence electron will be held less tightly by the nucleus i.e. it will experience a reduced nuclear attraction and can be removed easily than the Li 2s electron.
Answer:4
Explanation:
As shown in the image attached, a face-centred cubic structure has 8 atoms at the corners and 6 face center atoms.
Each corner atom contributes to eight cell, so per unit cell 1/8 ×8 =1atom
Face center atoms contributes to two unit cells 1/2 × 6=3atoms
Total atoms =3+1=4atoms
Therefore the atoms in Al FCC per unit cell is 4
Answer: 11.5 moles of carbon
Explanation:
Based on Avogadro's law:
1 mole of any substance has 6.02 x 10^23 atoms
So, 1 mole of carbon = 6.02 x 10^23 atoms
Z moles = 6.93 x 10^24 atoms
To get the value of Z, cross multiply:
(6.93 x 10^24 atoms x 1mole) = (6.02 x 10^23 atoms x Z moles)
6.93 x 10^24 = (6.02 x 10^23 x Z)
Z = (6.93 x 10^24) ➗ (6.02 x 10^23)
Z = 1.15 x 10
Z = 11.5 moles
Thus, there are 11.5 moles of carbon.
Answer:
So the volume will be 2.33 L
Explanation:
The reaction for the combustion is:
2 C₄H₁₀ (g) + 13 O₂ (g) → 8 CO₂ (g) + 10 H₂O (l)
mass of butane to moles (mass / molar mass)
1.4 g / 58 g/mol
= 0.024 moles
2 moles of butane can produce 8 moles of carbon dioxide
0.024 moles of butane must produce (0.024 × 8) /2
= 0.096 moles of CO₂
Now we apply the Ideal Gases Law to find out the volume formed.
P . V = n . R . T
p = 1atm
n = 0.096 mol
R = 0.082 L.atm/mol.K
T = 273 + 23 = 296K
V = ?
1atm × V = 0.096 mol × 0.082 L.atm/mol.K × 296K
V = 0.096 mol × 0.082 L.atm/mol.K × 296K / 1atm
= 2.33 L
So the volume will be 2.33 L