Answer is- 824% all you have to do is move the decimal point two spaces to the right.
        
                    
             
        
        
        
Answer:
Step-by-step explanation:
Sample space is 36C4
Now, we want to know all of the combinations that have 1 digit in it.
So, we can have one here:
1XXX
X1XX
XX1X
XXX1
But we have 10 different digits to choose from. So, we need to introduce the combination term, nCr, where n is a list of all digits and r is how many we want.
Since we only want one, we will need 10C1 for the number of digits. But we need to choose three lowercases, so it becomes 10C1 × 26C3
Since it's a probability question, we need to divide that by our sample space, 36C4, and our percentage becomes 44%
 
        
             
        
        
        
F(1)=-10
f(x), so x=1
f(x)=-10, y=f(x), and y=-10
(x,y)=(1,-10)
        
             
        
        
        
~ Simplifying
-4x + -4 = -7(x + 4)
~ Reorder the terms:
-4 + -4x = -7(x + 4)
~ Reorder the terms:
-4 + -4x = -7(4 + x)
-4 + -4x = (4 * -7 + x * -7)
-4 + -4x = (-28 + -7x)
~ Solving
-4 + -4x = -28 + -7x
~ Solving for variable 'x'.
~ Move all terms containing x to the left, all other terms to the right.
~ Add '7x' to each side of the equation.
-4 + -4x + 7x = -28 + -7x + 7x
~ Combine like terms: -4x + 7x = 3x
-4 + 3x = -28 + -7x + 7x
~ Combine like terms: -7x + 7x = 0
-4 + 3x = -28 + 0
-4 + 3x = -28
~ Add '4' to each side of the equation.
-4 + 4 + 3x = -28 + 4
~ Combine like terms: -4 + 4 = 0
0 + 3x = -28 + 4
3x = -28 + 4
~ Combine like terms: -28 + 4 = -24
3x = -24
~ Divide each side by '3'.
x = -8
~ Simplifying
x = -8
 
        
                    
             
        
        
        
Answer:
Step-by-step explanation:
Complete Question:
Chapter 6, Section 1-D, Exercise 009 Is a Normal Distribution Appropriate? In each case below, is the sample size large enough so that the sample proportions follow a normal distribution?
a) n=600 p=0.2
b) n=20, p=0.4
if np=10 and npq=10 then  the data follows normal distribution
a) np= 120,
q= 1-0.2= 0.8
npq= 600 ×0.2×0.4 = 48
Normal distribution is appropriate and sample size is large enough
b) np= 8
q= 1-0.4= 0.6
npq= 20 × 0.4×0.6= 4.8
sample size is not large enough so normal distribution is not appropriate.