62.5 mL is prepare .
What is molarity?
Molar concentration is a unit of measurement for the concentration of a chemical species, specifically a solute, in a solution, expressed as the amount of substance per unit volume of solution. The most often used unit for molarity in chemistry is the number of moles per litre, denoted by the unit symbol mol/L or mol/dm3 in SI units.
Molarity of the stock solution as 0.100 M
Volume of the dilute solution as 250 mL
Molarity of dilute solution as 0.0250 M
We are required to calculate the Volume of the stalk solution.
Taking the volume and molarity of the stock solution to be V₁ and M₁ respectively, and volume and molarity of the dilute solution to be V₂ and M₂ respectively.
We are going to use the dilution formula;
According to the dilution formula, M₁V₁ = M₂V₂
Rearranging the formula;
V₁ = M₂V₂ ÷ M₁
= (0.025 M × 0.25 L) ÷ 0.100 M
= 0.0625 L
But, 1 L = 1000 mL
V₁ = 62.5 mL
Therefore, the volume of the stock solution is 62.5 mL
Learn more about molarity from given link
brainly.com/question/26873446
#SPJ4
Answer:
The concentrations are :
![[HAsc^-]=0.000702 M](https://tex.z-dn.net/?f=%5BHAsc%5E-%5D%3D0.000702%20M)
![[Asc^{2-}]=5.92\times 10^{-8} M](https://tex.z-dn.net/?f=%5BAsc%5E%7B2-%7D%5D%3D5.92%5Ctimes%2010%5E%7B-8%7D%20M)
The pH of the solution is 3.15.
Explanation:

Initial
c 0 0
Equilibrium
c-x x x
![K_{a1}=\frac{[HAs^-][H^+]}{[H_2Asc]}](https://tex.z-dn.net/?f=K_%7Ba1%7D%3D%5Cfrac%7B%5BHAs%5E-%5D%5BH%5E%2B%5D%7D%7B%5BH_2Asc%5D%7D)


Solving for x:
x = 0.000702 M
![[HAsc^-]=0.000702 M](https://tex.z-dn.net/?f=%5BHAsc%5E-%5D%3D0.000702%20M)

Initially
x 0 0
At equilibrium ;
(x - y) y y
![K_{a2}=\frac{[As^{2-}][H^+]}{[HAsc^-]}](https://tex.z-dn.net/?f=K_%7Ba2%7D%3D%5Cfrac%7B%5BAs%5E%7B2-%7D%5D%5BH%5E%2B%5D%7D%7B%5BHAsc%5E-%5D%7D)


Putting value of x = 0.000702 M


![[Asc^{2-}]=5.92\times 10^{-8} M](https://tex.z-dn.net/?f=%5BAsc%5E%7B2-%7D%5D%3D5.92%5Ctimes%2010%5E%7B-8%7D%20M)
Total concentration of ![[H^+]=x+y=0.000702 M+5.92\times 10^{-8} M=7.0206\times 10^{-4} M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3Dx%2By%3D0.000702%20M%2B5.92%5Ctimes%2010%5E%7B-8%7D%20M%3D7.0206%5Ctimes%2010%5E%7B-4%7D%20M)
The pH of the solution :
![pH=-\log[H^+]](https://tex.z-dn.net/?f=pH%3D-%5Clog%5BH%5E%2B%5D)

Increasing every day. in 2013, we had about 7.125 Billion. in 9160, we had closer to 3 billion. It is still on a pretty steady clime today.
Volume of Argon V1 = 5.0 L
Pressure of Argon P1 = 2 atm
Final temperature T2 = 30 C = 30 + 273 = 303 K
Volume at final temperature V2= 6 L
Pressure at final temperature P2 = 8 atm
We know that (P1 x V1) / T1 = (P2 x V2) / T2
(2 x 5)/ T1 = (8 x 6)/ 303 => T1 = (10 x 303) / 48
Initial Temperature T1 = 3030 / 48 = 63.12
Initial Temperature = -209. 8 C
Answer: my answer I’d D! I’m sorry if this did not help you
Explanation: =)