Answer:
148.04 kJ/mol
Explanation:
Let's consider the following thermochemical equation.
NO(g) + 1/2 O₂(g) → NO₂(g) ΔH°rxn = -114.14 kJ/mol
We can find the standard enthalpy of formation (ΔH°f) of NO(g) using the following expression.
ΔH°rxn = 1 mol × ΔH°f(NO₂(g)) - 1 mol × ΔH°f(NO(g)) - 1/2 mol × ΔH°f(O₂(g))
ΔH°f(NO(g)) = 1 mol × ΔH°f(NO₂(g)) - ΔH°rxn - 1/2 mol × ΔH°f(O₂(g)) / 1 mol
ΔH°f(NO(g)) = 1 mol × 33.90 kJ/mol - (-114.14 kJ) - 1/2 mol × 0 kJ/mol / 1 mol
ΔH°f(NO(g)) = 148.04 kJ/mol
The question is incomplete.
You need two additional data:
1) the original volume
2) what solution you added to change the volume.
This is a molarity problem, so remember molarity definition and formula:
M = n / V in liters: number of moles per liter of solution
To give you the key to answer this kind of questions, supppose the original volumen was 1 ml and that you added only water (solvent).
The original solution was:
V= 1 ml
M = 0.2 M
Using the formula for molarity, M = n / V
n = M×V = 0.2 M × (1 / 10000)l = 0.0002 moles
For the final solution:
n = 0.0002 moles
M = 0.04
From M = n / V ⇒ V = n / M = 0.002 moles / 0.04 M = 0.05 l
Change to ml ⇒ 0.05 l × 1000 ml / l = 50 ml. This would be the answer for the hypothetical problem that I assumed for you.
I hope this gives you all the cues you need to answer similar problems about molarity.
The metalloid that has three valence electrons is Boron~
Quick look: In its modern sense, epigenetics is the term used to describe inheritance by mechanisms other than through the DNA sequence of genes. It can apply to characteristics passed from a cell to its daughter cells in cell division and to traits of a whole organism
Answer: No, the speed of propagation is constant in a given medium; only the wavelength changes as the frequency changes.
Explanation: