Answer:
<u><em>Group 8 is a group (column) of chemical elements in the periodic table. It consists of iron (Fe), ruthenium (Ru), osmium (Os) and hassium (Hs). They are all transition metals.</em></u>
Explanation:
The liquids so play tank i am just completing my sdgsgr
10g
Explanation:
Box 1, Mass of A = 10g
Box 2, Mass of B = 5g
Box 3, = 1A + 1B
Unknown:
Mass of B that would combine with mass of 20g of A
Solution:
Mass ratio of A to B:
= mass ratio
= mass ratio
The mass ratio of A to B = 2: 1
Now, number of B that will combine with 20g of A;
= mass ratio
= 
Mass of B = 10g
10g of B would combine with 20g of A
learn more:
Rate brainly.com/question/8677367
#learnwithBrainly
Answer:
a) ΔHvap=35.3395 kJ/mol
b) Tb=98.62 °C
Explanation:
Given the reaction:
C₇H₁₆ (l) ⇔ C₇H₁₆ (g)
Kp=P(C₇H₁₆) since the concentration ratio for a pure liquid is equal to 1.
When
T₁=50°C=323.15K ⇒P₁=0.179
T₂=86°C=359.15K ⇒P₂=0.669
The Clasius-Clapeyron equation is:



ΔHvap=35339.5 J/mol=35.3395 KJ/mol
Normal boiling point ⇒ P=1 atm
Hence, we find the normal boiling point where:
T₁=323.15K
P₁=0.179 atm
P₂=1 atm



T₂=371.77 K= 98.62 °C
Answer:
About 547 grams.
Explanation:
We want to determine the mass of copper (II) bicarbonate produced when a reaction produces 2.95 moles of copper (II) bicarbonate.
To do so, we can use the initial value and convert it to grams using the molar mass.
Find the molar mass of copper (II) bicarbonate by summing the molar mass of each individual atom:

Dimensional Analysis:

In conclusion, about 547 grams of copper (II) bicarbonate is produced.